Author(s):
Kalabharathi. H.L, Reddy Prasad. C, Pushpa VH, A M Satish, Vidya G Doddawad.
Email(s):
hlkalabharathi@jssuni.edu.in , rpc18163@gmail.com , pushpavh@jssuni.edu.in , amsatish@jssuni.edu.in , drvidyagd@gmail.com
DOI:
10.52711/0974-360X.2025.00009
Address:
Kalabharathi. H.L1, Reddy Prasad. C2, Pushpa VH3, A M Satish4, Vidya G Doddawad5
1Professor, Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research Mysuru-570015.
2Assistant Professor, Department of Pharmacology, MVJ Medical College and Research hospital Hoskot-562114.
3Professor, Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research Mysuru-570015.
4Professor and Head, Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research Mysuru- 570015.
5Associate professor, Department of oral pathology and Microbiology, JSS Dental College and Hospital JSS Academy of Higher Education and Research, Mysuru-570015, Karnataka, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
ABSTRACT:
Background: S-amlodipine and Nimodipine, two members of the dihydropyridine calcium channel blocker family, were originally developed to treat cardiovascular disorders, and have shown significant potential in their ability to relax bronchial smooth muscle. Hence, we evaluated the anti-asthmatic potential of L-type calcium channel blocker properties of S-amlodipine and Nimodipine using guinea pig animal models. Materials and Methods: Twenty-four healthy adult guinea pigs were divided into four groups, each group comprised 6 guinea pigs used to study acetylcholine and histamine-induced bronchospasm models. Each group of animals received normal saline, salbutamol (10mg/kg, p.o), nimodipine (40mg/kg, p.o), and S-amlodipine (1.5mg/kg, p.o) respectively for 5 days. The anti-asthmatic effect of each guinea pig was evaluated by exposing them to 0.25% histamine aerosol and 10% acetylcholine chloride, and recording the pre-convulsive dyspnea time. Result: The S-amlodipine demonstrated superior efficacy by significantly increasing pre-convulsive dyspnea time (PCD) compared to nimodipine in both models of bronchoconstriction. S-amlodipine and Nimodipine exhibited significant bronchial smooth muscle relaxant activity compared to the control group, although they did not perform as effectively as the salbutamol drug. Conclusion: The results of our study showed that S-amlodipine and Nimodipine exhibit notable bronchial smooth muscle relaxant activity compared to the control group. However, they do not match the effectiveness of the salbutamol drug.
Cite this article:
Kalabharathi. H.L, Reddy Prasad. C, Pushpa VH, A M Satish, Vidya G Doddawad. Pharmacological Evaluation of S-Amlodipine and Nimodipine as Bronchial Smooth Muscle Relaxants in Guinea Pigs:Ex-Vivo Study. Research Journal of Pharmacy and Technology. 2025;18(1):58-2. doi: 10.52711/0974-360X.2025.00009
Cite(Electronic):
Kalabharathi. H.L, Reddy Prasad. C, Pushpa VH, A M Satish, Vidya G Doddawad. Pharmacological Evaluation of S-Amlodipine and Nimodipine as Bronchial Smooth Muscle Relaxants in Guinea Pigs:Ex-Vivo Study. Research Journal of Pharmacy and Technology. 2025;18(1):58-2. doi: 10.52711/0974-360X.2025.00009 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-9
REFERENCES:
1. Rang HP, Dale MM. Rang and Dale’s Pharmacology 2007; 6: 1-16, 6 ed. Edinburgh: Churchill Livingstone Publishing.
2. Holgate ST. The epidemic of allergy and asthma. Nature 1999; 402: B2-4. doi: 10.1038/35037000.
3. Vivek Shinde, Gayatri Patil, Aishwarya Patil, Pavankumar Wankhede. Asthma: Types, Pathophysiology, and Herbal remedies. Asian Journal of Research in Pharmaceutical Sciences. 2023; 13(2):161-6. doi: 10.52711/2231-5659.2023.00028
4. Raafia Aseena, Syeda Zeba Hyder Zaidi, Nuha Rasheed, Abdul Saleem Mohammad. Anti-Asthmatic, Analgesic and Anti-Convulsant activities of the medicinal plant Bryonia laciniosa. Linn. Contributors. Asian J. Pharm. Res. 2017; 7(4): 256-260. doi: 10.5958/2231-5691.2017.00040.5
5. Punita R Maurya, Yadunath M Joshi, Vilasrao J Kadam. A Review on Bronchial Asthma. Research J. Pharmacology and Pharmacodynamics. 2013; 5(4). 257-265. DOI: 10.5958 2321-5836
6. Naveen MR, Santhosh YL. Asthma: An Overview. Research J. Pharm. and Tech. 2011; 4(6): 883-890. DOI: 10.5958/0974-360X
7. Mills, Thomas. Pauwels, Romain and Holgate, Stephen. Alle. (2nd edition). St. Louis: Mosby; 2001; 17-35. http://www.biomath.info/Protocols/Medicine/docs/DorinMonica.pdf
8. Vipul Shah, Vrunda Shah, DD Santani. Asthma and Plants Used for Asthma-An Overview. Research J. Pharmacology and Pharmacodynamics. 2012; 4(5): 328-338. DOI: 10.5958 2321-5836
9. Ghanshyam Dhalendra, Trilochan Satapathy, Amit Roy. Animal Models for Inflammation: A Review. Asian J. Pharm. Res. 2013; 3(4): 207-212. DOI: 10.5958/2231–5691
10. Giovannini F, Sher E, Webster R, Boot J, Lang B. Calcium channel subtypes contributing to acetylcholine release from normal, 4-aminopyridine-treated and myasthenic syndrome auto-antibodies-affected neuromuscular junctions. Br J Pharmacol. 2002; 136(8): 1135-45. doi: 10.1038/sj.bjp.0704818.
11. West GB. Calcium channels and histamine release from mast cells. Int Arch Allergy Appl Immunol. 1987; 84(1): 101-2. doi: 10.1159/000234405.
12. Prakash N Kendre, Syed N Lateef, Rahul K Godge, Mahendra A Giri, Bharat D Pagare , Ritesh D Patel. Formulation and in vitro-in vivo Evaluation of Theophyline and Salbutamol Sulphate Sustained Release Tablets. Research J. Pharma. Dosage Forms and Tech. 2009; 1(2): 103-107. DOI: 10.5958/0975-4377
13. Shamanaev AY, Aliev OI, Anishchenko AM, Sidehmenova AV, Plotnikov MB. Hemorheological effects of amlodipine in spontaneously hypertensive rats. Indian J Pharmacol. 2017; 49: 312-6. doi: 10.4103/ijp.IJP_176_16.
14. Scriabine A, van den Kerckhoff W. Pharmacology of nimodipine. A review. Ann N Y Acad Sci. 1988; 522: 698-706. doi: 10.1111/j.1749-6632.1988.tb33415.x.
15. Janković S, Beleslin D. Relaxant effects of oxytocin and 8-l-lysine-vasopressin on guinea pig and human gallbladder strips in vitro contracted by histamine. Digestion. 1991; 48(1): 18-24. doi: 10.1159/000200659.
16. Yoshizumi S, Murakami T, Kadoya M, Matsuda H, Yamahara J, Yoshikawa M. [Medicinal foodstuffs. XI. Histamine release inhibitors from wax gourd, the fruits of Benincasa hispida Cogn]. Yakugaku Zasshi. 1998; May; 118(5): 188-92. Japanese. doi: 10.1248/yakushi1947.
17. Ricciardolo FL, Nijkamp F, De Rose V, Folkerts G. The guinea pig is an animal model for asthma. Curr Drug Targets 2008; 9:452–65. doi: 10.2174/138945008784533534
18. Kolahian S, Gosens R. Cholinergic regulation of airway inflammation and remodeling. J Allergy (Cairo). 2012; 2: 681258. doi: 10.1155/2012/681258.
19. Kuo IY, Ehrlich BE. Signaling in muscle contraction. Cold Spring Harb Perspect Biol. 2015;7(2):a006023. doi: 10.1101/cshperspect.a006023.
20. Ajesh Kumar T. K. Assessment and Pathophysiology of Asthma. Int. J. Nur. Edu. and Research 2014; 2(2): 117-120. Available on: https://ijneronline.com/AbstractView.aspx?PID=2014-2-2-6.
21. Lofdhal CG. Antihypertensive drugs and airway function with special reference to calcium channel blockade. J Cardia vas Pharmacal 1989; 14 (Sppl. 10): S40-S51. PMID: 2483571.
22. Striessnig J, Ortner NJ, Pinggera A. Pharmacology of L-type Calcium Channels: Novel Drugs for Old Targets? Curr Mol Pharmacol. 2015; 8(2): 110-22. doi: 10.2174/1874467208666150507105845.
23. Kalantri M. R. , Aher A. N. Review on herbal drugs used in treatment for Asthma. Res. J. Pharmacognosy and Phytochem. 2018; 10(1): 63-67. DOI: 10.5958/0975-4385.2018.00010.9
24. Pavithra H. Dave, Preetha. Pathogenesis and Novel Drug for Treatment of Asthma – A Review. Research J. Pharm. and Tech 2016; 9(9): 1519-1523. DOI: 10.5958/0974-360X.2016.00297.3
25. Fanta CH, Venugopalan CS, Lacouture PG, Drazen JM. Inhibition of bronchoconstriction in the guinea pig by a calcium channel blocker, nifedipine. American Review of Respiratory Disease. 1982; 125(1): 61-6. doi: 10.1164/arrd.1982.125.1.61.
26. Chiu KY, Li JG, Lin Y. Calcium channel blockers for lung function improvement in asthma: A systematic review and meta-analysis. Annals of allergy, asthma and immunology. 2017; 119(6): 518-23. doi: 10.1016/j.anai.2017.08.013.
27. Solway J, Fanta CH, Collins L. Differential inhibition of bronchoconstriction by the calcium channel blockers, verapamil, and nifedipine. American Review of Respiratory Disease. 1985; Sep; 132(3): 666-70. doi: 10.1164/arrd.1985.132.3.666.
28. Chaswal ME, Singh SA, Tandon OP, Shankar NI. A study of pulmonary profile of hypertensive patients-comparison of atenolol vs amlodipine. Indian journal of physiology and pharmacology. 1998; 42: 538-42. PMID: 10874357.
29. P. Maheshwari, I. Somasundaram. Health-Related Quality of Life Measurement in Asthma and Chronic Obstructive Pulmonary Disease. Research J. Pharm. and Tech. 2016; 9(5): 518-520. DOI: 10.5958/0974-360X.2016.00097.4