Author(s):
Shilpa Rana, Uddipak Rai, Neha Kukreti, Pankaj Pant
Email(s):
shilparana9994@gmail.com
DOI:
10.52711/0974-360X.2025.00065
Address:
Shilpa Rana1*, Uddipak Rai2, Neha Kukreti3, Pankaj Pant2
1Department of Pharmacology, Uttaranchal Institute of Pharmaceutical Sciences (UIPS), Uttaranchal University, Dehradun - 248007, Uttarakhand, India.
2Faculty of Pharmacy, DIT University, Dehradun - 248009, Uttarakhand, India.
3Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India -140401.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
One of the main causes of death in the globe is cancer. It is uncontrolled proliferation of abnormal cell and can be malignant or non-malignant. Treatment of cancer via chemotherapeutic agents and radiation has been used since long. But due to their harmful effects and due to MDR (Multi Drug Resistance), use of herbal medicine has been the new approach. p53 (protein 53) gene also known as suppressor gene, is responsible for taking part in metabolic processes like apoptosis, DNA (Deoxyribonucleic Acid) repair and cell cycle arrest. The 393 amino acids that make up the p53 protein are divided into six domains. First is the N-terminal region, which is separated into two parts and contains the Transcription Activation Domain (TAD) (TD1 and TD2). The Proline-Rich Region (PRR), which is consistent in most p53s, comes in second. The DNA-binding portion of the central core domain (p53C), where more than 90% of human mutations occur, is ranked third. A nuclear localization signal domain comes in fourth. A tetramerization (TET) domain comes in fifth. The C-terminal domain (CT), a general DNA-binding domain, comes in at number six. So p53 is the target of many anti cancer drugs. Mutant versions of the tumor-suppressor p53 (mutp53) commonly develop tumor-promoting features in addition to losing their tumor-suppressive ones.The development of p53-targeted medications is particularly difficult since the agent must identify areas of improvement in mutp53 cancer cells while having no impact on healthy cells with wtp53 (wild type p53). Eupatorium adenophorum contains many chemical constituents like flavonoids, polyphenols, sesquiterpenoids, triterpenes etc which may show its effect in cancer treatment.
Cite this article:
Shilpa Rana, Uddipak Rai, Neha Kukreti, Pankaj Pant. Effect of Eupatorium adenophorum Extract on p53 Protein in Cancer Treatment. Research Journal of Pharmacy and Technology. 2025;18(1):421-6. doi: 10.52711/0974-360X.2025.00065
Cite(Electronic):
Shilpa Rana, Uddipak Rai, Neha Kukreti, Pankaj Pant. Effect of Eupatorium adenophorum Extract on p53 Protein in Cancer Treatment. Research Journal of Pharmacy and Technology. 2025;18(1):421-6. doi: 10.52711/0974-360X.2025.00065 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-65
REFERENCES:
1. Barot R, Sivabalan T. A study to evaluate the Quality of life in Head and Neck Cancer Patients admitted in Pravara Rural Hospital, Loni (Bk). Asian Journal of Nursing Education and Research. 2013; 3(1): 21-4.
2. Parker SL, Tong T, Bolden S, Wingo PA. Cancer statistics, 1997. CA: A Cancer Journal for Clinicians. 1997; Jan; 47(1): 5-27. DOI: 10.3322/canjclin.47.1.5
3. Siegel RL, Miller KD, Jemal A. Cancer statistics. CA: a Cancer Journal for Clinicians. 2015; Jan 6; 5(1): 5-29. DOI: 10.3322/caac.21254.
4. Stefan C. Will a global fund for cancer be the answer?. Nature Reviews Clinical Oncology. 2018; Apr 1; 5(4): 195-6.
5. Shakila S. A study to assess the Knowledge regarding Cervical Cancer among Women. Asian Journal of Nursing Education and Research. 2015; Jul 1; 5(3): 307 DOI: 10.5958/2349-2996.2015.00062.2.
6. Bhagya Seela S, Shanmuga Raju P, Ezhilarasi R. Role of Nursing in Lymphoedema with Breast Cancer Patients. Asian J. Nur. Edu. and Research. 2015; Oct; 5(4): 542-4. DOI: 10.5958/2349-2996.2015.00111.1.
7. Lakshmi KM, Jaseela KT, Anjana P, Sithara A, Dhrishya MT. Assess the awareness regarding Early Identification, prevention and management of breast cancer among early adult women. Asian Journal of Nursing Education and Research. 2019; 9(1): 4-8. DOI: 10.5958/2349-2996.2019.00002.8.
8. Patidar A, Shivhare SC, Ateneriya U, Choudhary S. A Comprehensive Review on Breast Cancer. Asian Journal of Nursing Education and Research. 2012; 2(1): 28.
9. Dange VN, Shid SJ, Magdum CS, Mohite SK. A review on breast cancer: An overview. Asian Journal of Pharmaceutical Research. 2017; 7(1): 49-51 DOI:10.5958/2231-5691.2017.00008.9.
10. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. Ca Cancer J Clin. 2021; Jan 12; 71(1): 7-33. doi: 10.3322/caac.21654.
11. Talib WH. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation. Nutrition. 2017; Nov 1; 43: 89-97. DOI: 10.1016/j.nut.2017.06.015
12. Kooti W, Servatyari K, Behzadifar M, Asadi-Samani M, Sadeghi F, Nouri B, Zare Marzouni H. Effective medicinal plant in cancer treatment, part 2: review study. Journal of Evidence-based Complementary and Alternative Medicine. 2017; Oct; 22(4): 982-95. DOI: 10.1177/2156587217696927.
13. Jaya PP, Shinto AW, Lohita M, Swetha K, Naresh D. Bird's Eye View on Herbal Treatment of Cancer. Asian Journal of Pharmacy and Technology. 2014; 4(1): 34-9. Kim S, An SS. Role of p53 isoforms and aggregations in cancer. Medicine. 2016; Jun; 95(26).
14. Parrales A, Iwakuma T. Targeting oncogenic mutant p53 for cancer therapy. Frontiers in Oncology. 2015; Dec 21; 5: 288 doi: 10.3389/fonc.2015.00288.
15. Beusterien K, Grinspan J, Kuchuk I, Mazzarello S, Dent S, Gertler S, Bouganim N, Vandermeer L, Clemons M. Use of conjoint analysis to assess breast cancer patient preferences for chemotherapy side effects. The Oncologist. 2014; Feb; 19(2): 127-34.
16. Diesendruck Y, Benhar I. Novel immune check point inhibiting antibodies in cancer therapy—Opportunities and challenges. Drug Resistance Updates. 2017; Jan 1; 30: 39-47 DOI: 10.1016/j.drup.2017.02.001
17. Escalante J, McQuade RM, Stojanovska V, Nurgali K. Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas. 2017; Nov 1; 105: 23-9 https://doi.org/10.1016/j.maturitas.2017.04.021
18. Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Transactions. 2018; 47(19): 6645-53.
19. Repullo D, Diaz M, Holbrechts S, Gomez-Galdón M, Van Gestel D, Bohlok A, Liberale G, Donckier V. Unusual presentation of a hepatocellular carcinoma as a potential late side effect of radiotherapy in a patient treated for Wilms tumor in childhood. World Journal of Surgical Oncology. 2018; Dec; 16(1): 1-4 DOI:10.1186/s12957-018-1346-1.
20. Kovalic JJ, Thomas PR, Beckwith JB, Feusner JH, Norkool PA. Hepatocellular carcinoma as second malignant neoplasms in successfully treated Wilms' tumor patients. A National Wilms' Tumor Study report. Cancer. 1991; Jan 15; 67(2): 342-4 DOI: 10.1002/1097-0142(19910115)67:2<342::aid-cncr2820670204>3.0.co;2-y
21. Nistane NT. Herbal nanoparticles against cancer. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019; 11(4): 247-52 DOI: 10.5958/0975-4377.2019.00041.7.
22. Kaur C, Kumar S, Singh S, Kaur H. Cancer: A Black Spot to Human Race!. Research Journal of Science and Technology. 2020; Feb 28; 12(1): 1-2 DOI: 10.5958/2349-2988.2020.00001.7.
23. Karale PA, Karale MA, Utikar MC. Advanced Molecular Targeted Therapy in Breast Cancer. Research Journal of Pharmacology and Pharmacodynamics. 2018; Jan; 10(1): 29-37 DOI: 10.5958/2321-5836.2018.00006.X.
24. Mills KD. Tumor suppression: Putting p53 in context. Cell Cycle. 2013; Nov 15; 12(22): 3461-2. DOI: 10.4161/cc.26806
25. Talib WH, Al-Hadid SA, Ali MB, Al-Yasari IH, Ali MR. Role of curcumin in regulating p53 in breast cancer: An overview of the mechanism of action. Breast Cancer: Targets and Therapy. 2018; Nov 29: 207-17. https://doi.org/10.2147/BCTT.S167812
26. Slee EA, O'Connor DJ, Lu X. To die or not to die: how does p53 decide?. Oncogene. 2004; Apr; 23(16): 2809-18.
27. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007; Feb; 445(7128): 661-5.
28. Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes and Development. 1993; Jul 1; 7(7a): 1126-32.
29. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis-the p53 network. Journal of Cell Science. 2003; Oct 15; 116(20): 4077-85. doi: https://doi.org/10.1242/jcs.00739.
30. Hong B, van den Heuvel PJ, V Prabhu V, Zhang S, S El-Deiry W. Targeting tumor suppressor p53 for cancer therapy: strategies, challenges and opportunities. Current Drug Targets. 2014; Jan 1; 15(1): 80-9.
31. Robles AI, Harris CC. Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harbor Perspectives in Biology. 2010; Mar 1; 2(3): a001016. doi: 10.1101/cshperspect.a001016.
32. Hu J, Cao J, Topatana W, Juengpanich S, Li S, Zhang B, Shen J, Cai L, Cai X, Chen M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. Journal of Hematology and Oncology. 2021; Dec; 14(1): 1-9.
33. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53 and cancer‐associated mutants. Advances in Cancer Research. 2007; Jan 1; 97: 1-23 Duffy MJ, Synnott NC, O’Grady S, Crown J. Targeting p53 for the treatment of cancer. In Seminars in cancer biology 2020 Jul 31. Academic Press doi: https://doi.org/10.1016/j.semcancer.2020.07.005.
34. Giri S, Sahu R, Paul P, Nandi G, Dua TK. An updated review on Eupatorium adenophorum Spreng.[Ageratina adenophora (Spreng.)]: traditional uses, phytochemistry, pharmacological activities and toxicity. Pharmacological Research-Modern Chinese Medicine. 2022; Feb 15: 100068 doi: https://doi.org/10.1016/j.prmcm.2022.100068.
35. Wan F, Liu W, Guo J, Qiang S, Li B, Wang J, Yang G, Niu H, Gui F, Huang W, Jiang Z. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Science China Life Sciences. 2010; Nov; 53(11): 1291-8.
36. Liu PY, Liu D, Li WH, Zhao T, Sauriol F, Gu YC, Shi QW, Zhang ML. Chemical constituents of plants from the genus Eupatorium (1904–2014). Chemistry and Biodiversity. 2015; Oct; 12(10): 1481-515 doi: https://doi.org/10.1002/cbdv.201400227
37. Tiwary BK, Bihani S, Kumar A, Chakraborty R, Ghosh R. The in vitro cytotoxic activity of ethno-pharmacological important plants of Darjeeling district of West Bengal against different human cancer cell lines. BMC Complementary and Alternative Medicine. 2015; Dec; 15(1): 1-0.
38. André R, Catarro J, Freitas D, Pacheco R, Oliveira MC, Serralheiro ML, Falé PL. Action of euptox A from Ageratina adenophora juice on human cell lines: A top-down study using FTIR spectroscopy and protein profiling. Toxicology in Vitro. 2019; Jun 1; 57: 217-25 doi :https://doi.org/10.1016/j.tiv.2019.03.012.
39. Bernhoft A. A brief review on bioactive compounds in plants. Bioactive compounds in plants-benefits and risks for man and animals. 2010; 50: 11-7.
40. Zhang M, Liu WX, Zheng MF, Xu QL, Wan FH, Wang J, Lei T, Zhou ZY, Tan JW. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules. 2013; Nov 14; 18(11): 14096-104 doi: https://doi.org/10.3390/molecules181114096.
41. Garg VK, Paliwal SK. Wound-healing activity of ethanolic and aqueous extracts of Ficus benghalensis. Journal of advanced pharmaceutical technology and research. 2011; Apr 1; 2(2): 110 doi: 10.4103/2231-4040.82957.
42. Sharma T, Bhide B, Acharya R. Ethnomedicinal Claims on Wound Healing Activity of Certain Leaf Drugs-A Review. Int J Ayurvedic Med. 2018; Apr 1; 9: 42-78.