Author(s):
Ajay Bhagwat, Aayush Lokhande, Mauli Pingat, Rohit Doke, Santosh Ghule
Email(s):
bhagwatajay44@gmail.com
DOI:
10.52711/0974-360X.2025.00063
Address:
Ajay Bhagwat1*, Aayush Lokhande1, Mauli Pingat1, Rohit Doke2, Santosh Ghule1
1Department of Pharmaceutics, Samarth College of Pharmacy, Belhe, Pune, India 412410.
2Department of Pharmacology, Jaihind College of Pharmacy, Vadgaon Sahani, Pune, India 412401.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
Researchers started exploring the potential benefits of amorphous pharmaceuticals in the 1960s and 1970s, realizing that amorphous forms of drugs could have enhanced solubility and bioavailability. But to enhance the bioavailability the drug was needed to be made stable so the researchers started to study about combination of drugs (drug-drug, drug-excipients and Drug-Coformer). To formulate a Co-Amorphous (COAM) drug selection of best co-former is very necessary for increasing both the stability as well as solubility of the primary drug. Here in this review, I have mentioned various methods for preparation or formulation of Co-Amorphous Drugs processes for solid state characterizations and other analytical techniques regarding the COAM formulation. The current review explores different strategies and mechanisms for enhancing the oral solubility of various drugs with the help of Co-Amorphous Mixtures.
Cite this article:
Ajay Bhagwat, Aayush Lokhande, Mauli Pingat, Rohit Doke, Santosh Ghule. Strategies and Mechanisms for Enhancing Drug Bioavailability through Co-Amorphous Mixtures - A Comprehensive Review. Research Journal of Pharmacy and Technology. 2025;18(1):409-4. doi: 10.52711/0974-360X.2025.00063
Cite(Electronic):
Ajay Bhagwat, Aayush Lokhande, Mauli Pingat, Rohit Doke, Santosh Ghule. Strategies and Mechanisms for Enhancing Drug Bioavailability through Co-Amorphous Mixtures - A Comprehensive Review. Research Journal of Pharmacy and Technology. 2025;18(1):409-4. doi: 10.52711/0974-360X.2025.00063 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-63
REFERENCES:
1. Shi, Q., Moinuddin, S. M. and Cai, T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B. 2019; 9: 19–35. DOI:10.1016/j.apsb.2018.08.002.
2. Trasi, N. S., Bhujbal, S. V., Zemlyanov, D. Y., Zhou, Q. (Tony) and Taylor, L. S. Physical stability and release properties of lumefantrine amorphous solid dispersion granules prepared by a simple solvent evaporation approach. Int. J. Pharm. X 2020; 2. DOI:10.1016/j.ijpx.2020.100052.
3. Carrière, F. Impact of gastrointestinal lipolysis on oral lipid-based formulations and bioavailability of lipophilic drugs. Biochimie. 2016; 125: 297–305. DOI:10.1016/j.biochi.2015.11.016.
4. Kalepu, S. and Nekkanti, V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B 2015; 5: 442–453. DOI:10.1016/j.apsb.2015.07.003.
5. Davis, M. and Walker, G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. Journal of Controlled Release. 2018; 269: 110–127. DOI:10.1016/j.jconrel.2017.11.005.
6. Gadade, D. D. and Pekamwar, S. S. Pharmaceutical cocrystals: Regulatory and strategic aspects, design and development. Advanced Pharmaceutical Bulletin. 2016; 6: 479–494. DOI:10.15171/apb.2016.062.
7. Chavan, R. B., Thipparaboina, R., Kumar, D. and Shastri, N. R. Co amorphous systems: A product development perspective. International Journal of Pharmaceutics. 2016; 515: 403–415. DOI:10.1016/j.ijpharm.2016.10.043.
8. Vasconcelos, T., Sarmento, B. and Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discovery Today. 2007: 12: 1068–1075. DOI:10.1016/j.drudis.2007.09.005.
9. Laitinen, R., Lob̈mann, K., Strachan, C. J., Grohganz, H. and Rades, T. Emerging trends in the stabilization of amorphous drugs. International Journal of Pharmaceutics. 2013; 453: 65–79. DOI:10.1016/j.ijpharm.2012.04.066.
10. Newman, A., Reutzel-Edens, S. M. and Zografi, G. Coamorphous Active Pharmaceutical Ingredient–Small Molecule Mixtures: Considerations in the Choice of Coformers for Enhancing Dissolution and Oral Bioavailability. J. Pharm. Sci. 2018; 107: 5–17. DOI:10.1016/j.xphs.2017.09.024.
11. Nielsen, L. H., Rades, T. and Müllertz, A. Stabilisation of amorphous furosemide increases the oral drug bioavailability in rats. Int. J. Pharm. 2015; 490: 334–340. DOI:10.1016/j.ijpharm.2015.05.063.
12. Bhandare, R., Londhe, V., Ashames, A., Shaikh, N. and Alabdin, S. Z. Enhanced solubility of microwave-assisted synthesized acyclovir co-crystals. Res. J. Pharm. Technol. 2020; 13: 5979–5986. DOI:10.5958/0974-360X.2020.01043.4.
13. Karimi-Jafari, M., Padrela, L., Walker, G. M. and Croker, D. M. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Crystal Growth and Design. 2018; 18: 6370–6387. DOI:10.1021/acs.cgd.8b00933.
14. Punitha, S., Srinivasa Reddy, G., Srikrishna, T. and Lakshman Kumar, M. Solid dispersions: A review. Res. J. Pharm. Technol. 2011 4, 331–334 DOI:10.33786/jcpr.2010.v01i01.016.
15. Pilcer, G. and Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010; 392: 1–19. DOI:10.1016/j.ijpharm.2010.03.017.
16. Karagianni, A., Kachrimanis, K. and Nikolakakis, I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: Composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018; 10. DOI:10.3390/pharmaceutics10030098.
17. Psimadas, D., Georgoulias, P., Valotassiou, V. and Loudos, G. Molecular Nanomedicine Towards Cancer : J. Pharm. Sci. 2012; 101: 2271–2280. DOI:10.1002/jps.
18. Löbmann, K. et al. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Biopharm. 2012; 81: 159–169. DOI:10.1016/j.ejpb.2012.02.004.
19. Sharma, D., Soni, M., Kumar, S. and Gupta, G. D. Solubility Enhancement-Eminent Role in Poorly Soluble Drugs. Res. J. Pharm. Tech. 2009; 2: 220–224.
20. Wang, H. et al. A review of process intensification applied to solids handling. Chem. Eng. Process. - Process Intensif. 2017; 118: 78–107. DOI:10.1016/j.cep.2017.04.007.
21. Sumanth Kumar, D., Jai Kumar, B. and Mahesh, H. M. Quantum Nanostructures (QDs): An Overview. Synthesis of Inorganic Nanomaterials: Advances and Key Technologies. 2018 doi:10.1016/B978-0-08-101975-7.00003-8 DOI:10.1016/B978-0-08-101975-7.00003-8.
22. Ye, J. and Schoenung, J. M. Technical cost modeling for the mechanical milling at cryogenic temperature (cryomilling). Adv. Eng. Mater. 2004; 6: 656–664 DOI:10.1002/adem.200400074.
23. D’Angelo, A., Edgar, B., Hurt, A. P. and Antonijević, M. D. Physico-chemical characterisation of three-component co-amorphous systems generated by a melt-quench method. J. Therm. Anal. Calorim. 2018; 134: 381–390. DOI:10.1007/s10973-018-7291-y.
24. Bhore, S. D. A review on solid dispersion as a technique for enhancement of bioavailability of poorly water soluble drugs. Res. J. Pharm. Technol. 2014; 7: 1485–1491.
25. Ohori, R., Akita, T. and Yamashita, C. Mechanism of collapse of amorphous-based lyophilized cake induced by slow ramp during the shelf ramp process. Int. J. Pharm. 2019 564, 461–471 DOI:10.1016/j.ijpharm.2019.04.057.
26. Silambarasan, I. and Rajalakshmi, A. N. A Review on Freeze-drying: A Stability Enhancement Technique. Res. J. Pharm. Technol. 2022; 15: 4841–4846. DOI:10.52711/0974-360X.2022.00813.
27. Singh, A. and Van den Mooter, G. Spray drying formulation of amorphous solid dispersions. Advanced Drug Delivery Reviews. 2016; 100: 27–50. DOI:10.1016/j.addr.2015.12.010.
28. Lenz, E. et al. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine. Eur. J. Pharm. Biopharm. 2015; 96: 44–52. DOI:10.1016/j.ejpb.2015.07.011.
29. Dengale, S. J. et al. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur. J. Pharm. Sci. 2014; 62: 57–64. DOI:10.1016/j.ejps.2014.05.015.
30. Sunitha Reddy, M., Shruthi, B., Mounika, B. and Sowmya, G. Fast dissolving drug delivery system - A Review. Res. J. Pharm. Technol. 2013; 6: 4–11.
31. Lenz, E., Löbmann, K., Rades, T., Knop, K. and Kleinebudde, P. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers. J. Pharm. Sci. 2017; 106: 302–312. DOI:10.1016/j.xphs.2016.09.027.
32. Loh, Z. H., Samanta, A. K. and Sia Heng, P. W. Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian Journal of Pharmaceutical Sciences. 2014; 10: 255–274. DOI:10.1016/j.ajps.2014.12.006.
33. Skotnicki, M. et al. Physicochemical characterization of a co-amorphous atorvastatin-irbesartan system with a potential application in fixed-dose combination therapy. Pharmaceutics. 2021; 13: 1–20. DOI:10.3390/pharmaceutics13010118.
34. Wang, M. et al. Exploring the physical stability of three nimesulide–indomethacin co-amorphous systems from the perspective of molecular aggregates. Eur. J. Pharm. Sci. 2020; 147: 105294. DOI:10.1016/j.ejps.2020.105294.
35. Mannava, M. K. C., Suresh, K., Bommaka, M. K., Konga, D. B. and Nangia, A. Curcumin-artemisinin coamorphous solid: Xenograft model preclinical study. Pharmaceutics. 2018; 10. DOI:10.3390/pharmaceutics10010007.
36. Beyer, A. et al. Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin. Eur. J. Pharm. Biopharm. 2016; 104: 72–81. DOI:10.1016/j.ejpb.2016.04.019.
37. Pang, W. et al. Preparation of Curcumin-Piperazine Coamorphous Phase and Fluorescence Spectroscopic and Density Functional Theory Simulation Studies on the Interaction with Bovine Serum Albumin. Mol. Pharm. 2017; 14: 3013–3024. DOI:10.1021/acs.molpharmaceut.7b00217.
38. Renuka, Singh, S. K., Gulati, M. and Narang, R. Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm. Dev. Technol. 2017; 22: 13–25. DOI:10.3109/10837450.2015.1125921.
39. Bohr, A. et al. Efflux inhibitor bicalutamide increases oral bioavailability of the poorly soluble efflux substrate docetaxel in co-amorphous anti-cancer combination therapy. Molecules 2019; 24: 1–13. DOI:10.3390/molecules24020266.
40. Hatwar, P., Pathan, I. B., Chishti, N. A. H. and Ambekar, W. Pellets containing quercetin amino acid co-amorphous mixture for the treatment of pain: Formulation, optimization, in-vitro and in-vivo study. J. Drug Deliv. Sci. Technol. 2021; 62: 102350. DOI:10.1016/j.jddst.2021.102350.
41. França, M. T., Marcos, T. M., Pereira, R. N. and Stulzer, H. K. Could the small molecules such as amino acids improve aqueous solubility and stabilize amorphous systems containing Griseofulvin? Eur. J. Pharm. Sci. 2020; 143: 105178 DOI:10.1016/j.ejps.2019.105178.
42. Zhu, S., Gao, H., Babu, S. and Garad, S. Co-Amorphous Formation of High-Dose Zwitterionic Compounds with Amino Acids to Improve Solubility and Enable Parenteral Delivery. Mol. Pharm. 2018; 15: 97–107. DOI:10.1021/acs.molpharmaceut.7b00738.
43. Heng, W. et al. Incorporation of Complexation into a Coamorphous System Dramatically Enhances Dissolution and Eliminates Gelation of Amorphous Lurasidone Hydrochloride. Mol. Pharm. 2020; 17: 84–97 DOI:10.1021/acs.molpharmaceut.9b00772.
44. Patel, J., Kevin, G., Patel, A., Raval, M. and Sheth, N. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery. Int. J. Pharm. Investig. 2011; 1: 112. DOI:10.4103/2230-973x.82431.
45. Huang, Y., Zhang, Q., Wang, J. R., Lin, K. L. and Mei, X. Amino acids as co-amorphous excipients for tackling the poor aqueous solubility of valsartan. Pharm. Dev. Technol. 2017; 22: 69–76. DOI:10.3109/10837450.2016.1163390.
46. Mahajan, A., Surti, N. and Koladiya, P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 32 factorial design. Drug Dev. Ind. Pharm. 2018; 44: 463–471. DOI:10.1080/03639045.2017.1397687.
47. Davis, M. T., Potter, C. B. and Walker, G. M. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Part. Technol. Forum 2018 - Core Program. Area. 2018; AIChE Annu. Meet. 2018; 117–138.
48. França, M. T., Nicolay, R. P., Klüppel Riekes, M., Munari Oliveira Pinto, J. and Stulzer, H. K. Investigation of novel supersaturating drug delivery systems of chlorthalidone: The use of polymer-surfactant complex as an effective carrier in solid dispersions. Eur. J. Pharm. Sci. 2018; 111: 142–152. DOI:10.1016/j.ejps.2017.09.043.
49. Alhayali, A., Tavellin, S. and Velaga, S. Dissolution and precipitation behavior of ternary solid dispersions of ezetimibe in biorelevant media. Drug Dev. Ind. Pharm. 2017; 43: 79–88 DOI:10.1080/03639045.2016.1220566.
50. Medarevic, D., Vranic, E., Potpara, Z. and Krstic, M. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. 2018. doi:10.1016/j.jsps.2018.02.017.
51. Zhang, M. et al. Microcrystalline cellulose as an effective crystal growth inhibitor for the ternary Ibrutinib formulation. Carbohydr. Polym. 2020; 229: 115476. DOI:10.1016/j.carbpol.2019.115476.
52. Nguyen, D. N. and Van Den Mooter, G. The fate of ritonavir in the presence of darunavir. Int. J. Pharm. 2014; 475: 214–226. DOI:10.1016/j.ijpharm.2014.08.062.
53. Ruponen, M., Rusanen, H. and Laitinen, R. Dissolution and Permeability Properties of Co-Amorphous Formulations of Hydrochlorothiazide. J. Pharm. Sci. 2020; 109: 2252–2261. DOI:10.1016/j.xphs.2020.04.008.
54. Zhang, Y. et al. Combining co-amorphous-based spray drying with inert carriers to achieve improved bioavailability and excellent downstream manufacturability. Pharmaceutics. 2020; 12: 1–17. DOI:10.3390/pharmaceutics12111063.
55. Liu, J., Grohganz, H. and Rades, T. Influence of polymer addition on the amorphization, dissolution and physical stability of co-amorphous systems. Int. J. Pharm. 2020; 588: 119768. DOI:10.1016/j.ijpharm.2020.119768.
56. Pacułt, J. et al. Erratum: How can we improve the physical stability of co-amorphous system containing flutamide and bicalutamide? The case of ternary amorphous solid dispersions. (European Journal of Pharmaceutical Sciences. (2019) 136, (S0928098719302106), (10.1016/j.ejps. Eur. J. Pharm. Sci. 2021; 159: 1–9 DOI:10.1016/j.ejps.2020.105697.
57. Bunaciu, A. A., Udriştioiu, E. gabriela and Aboul-Enein, H. Y. X-Ray Diffraction: Instrumentation and Applications. Crit. Rev. Anal. Chem. 2015; 45: 289–299 DOI:10.1080/10408347.2014.949616.
58. Kilpeläinen, T. et al. Raman imaging of amorphous-amorphous phase separation in small molecule co-amorphous systems. Eur. J. Pharm. Biopharm. 2020; 155: 49–54. DOI:10.1016/j.ejpb.2020.08.007.
59. Haines, P. J., Reading, M. and Wilburn, F. W. Differential Thermal Analysis and Differential Scanning Calorimetry. 1998: 279–361. doi:10.1016/S1573-4374(98)80008-3 DOI:10.1016/S1573-4374(98)80008-3.
60. Dutta, A. Fourier Transform Infrared Spectroscopy. in Spectroscopic Methods for Nanomaterials Characterization. 2017; 2: 73–93 DOI:10.1016/B978-0-323-46140-5.00004-2.