Author(s):
Hasan Rezazadeh, Hasti Hoseini, Aria Salari
Email(s):
salari.aria@gmail.com
DOI:
10.52711/0974-360X.2025.00061
Address:
Hasan Rezazadeh1, Hasti Hoseini2, Aria Salari3*
1Student, Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
2Student, Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
3Student, Faculty of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
When oral tissues are infected with viruses, the oral tissues usually develop blisters or ulcerations. These infections are seen in dental settings, but because of their low prevalence and difficult diagnosis, they frequently do not receive much clinical attention. This page compiles data on oral viral infections' etiology, clinical signs, diagnosis techniques, and management plans. DNA viruses, including those belonging to the families Herpesviridae, Papillomaviridae, and Poxviridae, are frequently linked to oral sores. Moreover, the oral cavity can be impacted by RNA viruses including enteroviruses and paramyxoviruses. Many antiviral medications are available on the market; however they might alter the oral microbiota and have unfavorable side effects. Consequently, natural phytochemicals extracted from plants that have historically been used in medicine are seen as promising alternatives, and the hunt for alternatives to products continues. Using the keywords, we looked for a variety of literature for this study using the PubMed and Google Scholar search engines. The first search yielded 280 papers based on their titles, abstracts, and publication dates. There were 156 unique articles left when duplicate items were eliminated. This research will examine the most widely used plant that inhibits oral viral pathogen development, decreases biofilm and dental plaque production, affects viral adherence to surfaces, and relieves symptoms associated with oral viral diseases.
Cite this article:
Hasan Rezazadeh, Hasti Hoseini, Aria Salari. A Review of Medicinal plants for Infectious Oral Viral Diseases: A Systematic Review. Research Journal of Pharmacy and Technology. 2025;18(1):393-1. doi: 10.52711/0974-360X.2025.00061
Cite(Electronic):
Hasan Rezazadeh, Hasti Hoseini, Aria Salari. A Review of Medicinal plants for Infectious Oral Viral Diseases: A Systematic Review. Research Journal of Pharmacy and Technology. 2025;18(1):393-1. doi: 10.52711/0974-360X.2025.00061 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-61
REFERENCES:
1. Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol. 2019;10:208. doi:10.3389/fimmu.2019.00208
2. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001; (29): 7-15. doi:10.1093/oxfordjournals.jncimonographs.a003443
3. La Rosa GRM, Libra M, De Pasquale R, Ferlito S, Pedullà E. Association of Viral Infections With Oral Cavity Lesions: Role of SARS-CoV-2 Infection. Front Med. 2020; 7: 571214. doi:10.3389/fmed.2020.571214
4. Santosh ABR, Muddana K. Viral infections of oral cavity. J Fam Med Prim care. 2020; 9(1): 36-42. doi:10.4103/jfmpc.jfmpc_807_19
5. Palombo EA. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid Based Complement Alternat Med. 2011; 2011: 680354. doi:10.1093/ecam/nep067
6. Ashu Agbor M, Naidoo S. Ethnomedicinal Plants Used by Traditional Healers to Treat Oral Health Problems in Cameroon. Evid Based Complement Alternat Med. 2015; 2015: 649832. doi:10.1155/2015/649832
7. Priyadarshi S, Dubey D, Srivastava R. Medicinal plants in dentistry- A brief review. IP Int J Maxillofac Imaging. 2023; 9: 115-118. doi:10.18231/j.ijmi.2023.020
8. Khan I, Khan A. Medicinal plants as alternative treatments for oral health problems. Asian J Pharm Clin Res. 2018; 11: 58. doi:10.22159/ajpcr.2018.v11i9.24918
9. Bahmani M, Rafieian-Kopaei M, Jeloudari M, et al. A review of the health effects and uses of drugs of plant licorice (Glycyrrhiza glabra L.) in Iran. Asian Pacific J Trop Dis. 2014; 4: S847-S849.
10. Mohammadi Z, Pishkar L, Eftekhari Z, Barzin G, Babaeekhou L. Evaluation of the Antimicrobial and Cytotoxic Activity of Cultivated Valeriana officinalis. Plant Sci Today. 2024; 11(1): 145-155.
11. Brunson JL, Khoretonenko M V, Stokes KY. Chapter 10 - Herpesviruses. In: Gavins FNE, Stokes KY, eds. Vascular Responses to Pathogens. Academic Press; 2016: 123-136. doi:https://doi.org/10.1016/B978-0-12-801078-5.00010-8
12. Crimi S, Fiorillo L, Bianchi A, et al. Herpes Virus, Oral Clinical Signs and QoL: Systematic Review of Recent Data. Viruses. 2019; 11(5). doi:10.3390/v11050463
13. Sarid R, Klepfish A, Schattner A. Virology, pathogenetic mechanisms, and associated diseases of Kaposi sarcoma-associated herpesvirus (human herpesvirus 8). Mayo Clin Proc. 2002; 77(9): 941-949. doi:10.4065/77.9.941
14. Khalifa C, Slim A, Maroua G, Sioud S, Hentati H, Selmi J. Herpes simplex virus infection: Management of primary oral lesions in children. Clin case reports. 2022; 10(8). doi:10.1002/ccr3.6127
15. Stoopler ET, Greenberg MS. Update on herpesvirus infections. Dent Clin North Am. 2003; 47(3): 517-532. doi:10.1016/s0011-8532(03)00018-1
16. Spruance SL, Nett R, Marbury T, Wolff R, Johnson J, Spaulding T. Acyclovir cream for treatment of herpes simplex labialis: results of two randomized, double-blind, vehicle-controlled, multicenter clinical trials. Antimicrob Agents Chemother. 2002; 46(7): 2238-2243. doi:10.1128/AAC.46.7.2238-2243.2002
17. Kolokotronis A, Louloudiadis K, Fotiou G, Matiais A. Oral manifestations of infections of infections due to varicella zoster virus in otherwise healthy children. J Clin Pediatr Dent. 2001; 25(2): 107-112. doi:10.17796/jcpd.25.2.p255673211764073
18. Damania B, Kenney SC, Raab-Traub N. Epstein-Barr virus: Biology and clinical disease. Cell. 2022; 185(20): 3652-3670. doi:10.1016/j.cell.2022.08.026
19. Rahman R, Gopinath D, Buajeeb W, Poomsawat S, Johnson NW. Potential Role of Epstein-Barr Virus in Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma: A Scoping Review. Viruses. 2022;14(4). doi:10.3390/v14040801
20. Slots J, Saygun I, Sabeti M, Kubar A. Epstein-Barr virus in oral diseases. J Periodontal Res. 2006; 41(4): 235-244. doi:10.1111/j.1600-0765.2006.00865.x
21. Brown HL, Abernathy MP. Cytomegalovirus infection. Semin Perinatol. 1998; 22(4): 260-266. doi:10.1016/s0146-0005(98)80014-1
22. Epstein JB, Sherlock CH, Wolber RA. Oral manifestations of cytomegalovirus infection. Oral Surg Oral Med Oral Pathol. 1993; 75(4): 443-451. doi:10.1016/0030-4220(93)90168-4
23. Pinana M, Rapoport C, Champtiaux N, Lescaille G, Allenbach Y, Rochefort J. Cytomegalovirus-induced oral ulcers: A case report and literature review. Clin case reports. 2023; 11(6): e7459. doi:10.1002/ccr3.7459
24. Wolz MM, Sciallis GF, Pittelkow MR. Human herpesviruses 6, 7, and 8 from a dermatologic perspective. Mayo Clin Proc. 2012; 87(10): 1004-1014. doi:10.1016/j.mayocp.2012.04.010
25. Hamada N, Shigeishi H, Oka I, et al. Associations between Oral Human Herpesvirus-6 and -7 and Periodontal Conditions in Older Adults. Life (Basel, Switzerland). 2023; 13(2). doi:10.3390/life13020324
26. Fatahzadeh M. Oral Manifestations of Viral Infections. Atlas Oral Maxillofac Surg Clin North Am. 2017; 25(2): 163-170. doi:10.1016/j.cxom.2017.04.008
27. Darvishi M, Rahimi F, Abadi ATB. SARS-CoV-2 Lambda (C. 37): An emerging variant of concern? Gene Reports. 2021; 25: 101378.
28. Widoyo H, Mohammed ZY, Ramírez-Coronel AA, et al. Herbal therapy in Covid-19: A systematic review of medicinal plants effective against Covid-19. Casp J Environ Sci. Published online 2022: 1-10.
29. Horstmann DM. Enterovirus Infections: Etiologic, Epidemiologic And Clinical Aspects. Calif Med. 1965; 103(1): 1-8.
30. Porter A, Goldfarb J. Measles: A dangerous vaccine-preventable disease returns. Cleve Clin J Med. 2019; 86(6): 393-398. doi:10.3949/ccjm.86a.19065
31. Ebrahimi Y, Abdalkareem Jasim S, Mohammed BA, et al. Determination of Antioxidant Properties of Mentha longifolia, Pistacia khinjuk and Eucalyptus globulus. Casp J Environ Sci. Published online 2022:1-6.
32. Asgharpour F, Pouramir M, Khalilpour A, Alamdar SA, Rezaei M. Antioxidant activity and glucose diffusion relationship of traditional medicinal antihyperglycemic plant extracts. Int J Mol Cell Med. 2013; 2(4): 169.
33. Ebrahimi Y, AL-Baghdady HFA, Hameed NM, et al. Common fatty acids and polyphenols in olive oil and its benefits to heart and human health. Casp J Environ Sci. Published online 2022: 1-7.
34. Sharad S, Kapur S. Indian Herb-Derived Phytoconstituent-Based Antiviral, Antimicrobial and Antifungal Formulation: An Oral Rinse Candidate for Oral Hygiene and the Potential Prevention of COVID-19 Outbreaks. Pathog (Basel, Switzerland). 2021; 10(9). doi:10.3390/pathogens10091130
35. Lin LT, Hsu WC, Lin CC. Antiviral Natural Products and Herbal Medicines. J Tradit Complement Med. 2014; 4(1): 24-35. doi:https://doi.org/10.4103/2225-4110.124335
36. Tahmasbi SF, Revell MA, Tahmasebi N. Herbal Medication to Enhance or Modulate Viral Infections. Nurs Clin North Am. 2021; 56(1): 79-89. doi:10.1016/j.cnur.2020.10.007
37. Bahmani M, Saki K, Rafieian-Kopaei M, Karamati SA, Eftekhari Z, Jelodari M. The most common herbal medicines affecting Sarcomastigophora branches: a review study. Asian Pac J Trop Med. 2014; 7: S14-S21. doi:https://doi.org/10.1016/S1995-7645(14)60198-X
38. Gholamine B, Malviya J, Rudiansyah M, et al. Herbal therapy in diabetes mellitus: A review. Adv Life Sci. 2024; 11(1): 40-48.
39. Fakhri M, Farhadi R, Mousavinasab SN, Yosefi SS, Hosseinimehr SJ, Azadbakht M. Effect of natural products on jaundice in Iranian neonates. Jundishapur J Nat Pharm Prod. 2019; 14(1).
40. Kianbakht S, Nabati F, Abasi B. Salvia officinalis (Sage) leaf extract as add-on to statin therapy in hypercholesterolemic type 2 diabetic patients: a randomized clinical trial. Int J Mol Cell Med. 2016; 5(3): 141.
41. Razmjoue D, Pirhadi M, Soltanbeigi A, Lysiuk R, Asadzadeh R. Investigating the effect of total antioxidant capacity of medicinal plants Salsola rigida and Triticum aestivum. Plant Biotechnol Persa. 2023; 5(2): 1-6.
42. Khamevar A, Ebrahimzadeh MA, Moosazadeh M, et al. Effectiveness of Pistacia atlantica on older adult knee osteoarthritis, a randomized triple blind clinical trial. Phyther Res. 2021; 35(9): 5125-5132.
43. Pirzadeh S, Fakhari S, Jalili A, Mirzai S, Ghaderi B, Haghshenas V. Glycyrrhetinic acid induces apoptosis in leukemic HL60 cells through upregulating of CD95/CD178. Int J Mol Cell Med. 2014; 3(4): 272.
44. Alrekaby FFM, Alkhatib AJ, Abubakar H, Shokri S. Evaluation of phytochemical properties and antioxidant activity of methanol extract of Ziziphus spina-christi, Satureja khuzistanica, and Salvia Rosmarinus using FT-IR method. J Biochem Phytomedicine. 2023; 2(2): 47-53.
45. Komaki A, Hoseini F, Shahidi S, Baharlouei N. Study of the effect of extract of Thymus vulgaris on anxiety in male rats. J Tradit Complement Med. 2016; 6(3): 257-261.
46. Prasanth Reddy V, Ravi Vital K, Varsha P V, Satyam S. Review on Thymus vulgaris traditional uses and pharmacological properties. Med Aromat Plants. 2014; 3(164): 412-2167.
47. Benzekri R, Bouslama L, Papetti A, Hammami M, Smaoui A, Limam F. Anti HSV-2 activity of Peganum harmala (L.) and isolation of the active compound. Microb Pathog. 2018; 114: 291-298. doi:10.1016/j.micpath.2017.12.017
48. Haramshahi M, Babaie S, Shahnazi M, Kafil B, Farshbaf-Khalili A, Naghdi M. The efficacy of oral Lavandula angustifolia Mill. essential oil on menopausal symptoms, serum lipid profile, and cortisol concentration in postmenopausal women: A triple-blind, randomized, controlled trial. Complement Ther Med. 2024; 82: 103050. doi:https://doi.org/10.1016/j.ctim.2024.103050
49. Miastkowska M, Kantyka T, Bielecka E, et al. Enhanced biological activity of a novel preparation of lavandula angustifolia essential oil. Molecules. 2021; 26(9): 2458.
50. Sharma L, Chandra M, Puneeta A. Health benefits of lavender (Lavandula angustifolia). Int J Physiol Nutr Phys Educ. 2020; 4(1): 1274-1277.
51. Crisan I, Ona A, Varban D, et al. Current trends for lavender (lavandula angustifolia Mill.) crops and products with emphasis on essential oil quality, Plants 12 (2)(2023) 357.
52. Chianese A, Gravina C, Morone MV, et al. Lavandula austroapennina: Assessment of the Antiviral Activity of Lipophilic Extracts from Its Organs. Viruses. 2023; 15(8): 1648.
53. Hashem-Dabaghian F, Azimi SA, Bahrami M, Latifi SA, Enayati A, Qaraaty M. Effect of Lavender (Lavandula angustifolia L.) syrup on olfactory dysfunction in COVID-19 infection: A pilot controlled clinical trial. Avicenna J phytomedicine. 2022; 12(1): 1.
54. Abd Rashid N, Mohamad Najib NH, Abdul Jalil NA, Teoh SL. Essential Oils in Cervical Cancer: Narrative Review on Current Insights and Future Prospects. Antioxidants (Basel, Switzerland). 2023; 12(12). doi:10.3390/antiox12122109
55. Pašić I, Ćuk I, Petrović N, et al. Cytotoxic Effects of Lavandula Angustifolia Mill. and Laurus Nobilis L. Essential Oils on Human Cervical Adenocarcinoma Cells.; 2022.
56. Maocha IG, Carvalho J, Lopes-Nunes J, et al. Drug Formulations for Localized Treatment of Human Papillomavirus-Induced Lesions. J Pharm Sci. 2022; 111(8): 2230-2238. doi:10.1016/j.xphs.2022.02.004
57. Bellassoued K, Ben Hsouna A, Athmouni K, et al. Protective effects of Mentha piperita L. leaf essential oil against CCl4 induced hepatic oxidative damage and renal failure in rats. Lipids Health Dis. 2018; 17(1): 9. doi:10.1186/s12944-017-0645-9
58. Mahendran G, Rahman L. Ethnomedicinal, phytochemical and pharmacological updates on Peppermint (Mentha× piperita L.)—A review. Phyther Res. 2020; 34(9): 2088-2139.
59. Wei H, Kong S, Jayaraman V, Selvaraj D, Soundararajan P, Manivannan A. Mentha arvensis and Mentha× piperita-vital herbs with myriads of pharmaceutical benefits. Horticulturae. 2023; 9(2):224.
60. Gholamipourfard K, Salehi M, Banchio E. Mentha piperita phytochemicals in agriculture, food industry and medicine: Features and applications. South African J Bot. 2021; 141: 183-195.
61. Mulpuru V, Mishra N. Computational identification of SARS-CoV-2 inhibitor in Tinospora cordifolia, Cinnamomum zeylanicum and Myristica fragrans. VirusDisease. 2021; 32: 511-517.
62. KIRAY E. Antimicrobial, Antiviral And Antifungal Activities Of Various Cinnamomum spp. Adv Heal Sci.:159.
63. Thakur S, Walia B, Chaudhary G. Dalchini (cinnamomum zeylanicum): a versatile spice with significant therapeutic potential: Cinnamomum Zeylanicum. Int J Pharm Drug Anal. Published online. 2021: 126-136.
64. Chickenpox KS, Clark D. Treating Herpes Naturally with Larrea tridentata. Published online 2010.
65. Reyes-Melo KY, Galván-Rodrigo AA, Martínez-Olivo IE, et al. Larrea tridentata and its Biological Activities. Curr Top Med Chem. 2021; 21(26): 2352-2364.
66. Martins S, Amorim ELC, Sobrinho TJSP, et al. Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Ind Crops Prod. 2013; 41: 306-311.
67. Morales-Ubaldo AL, Rivero-Perez N, Valladares-Carranza B, et al. Phytochemical compounds and pharmacological properties of larrea tridentata. Molecules. 2022; 27(17): 5393.
68. Zhu Z, Zhao S, Wang C. Antibacterial, antifungal, antiviral, and antiparasitic activities of Peganum harmala and its ingredients: A review. Molecules. 2022; 27(13): 4161.
69. Hayet E, Maha M, Mata M, Gannoun S, Laurent G, Aouni M. Biological activities of Peganum harmala leaves. African J Biotechnol. 2010; 9: 8199-8205. doi:10.5897/AJB10.564
70. Moradi MT, Karimi A, Rafieian-Kopaei M, Fotouhi F. In vitro antiviral effects of Peganum harmala seed extract and its total alkaloids against Influenza virus. Microb Pathog. 2017; 110: 42-49. doi:https://doi.org/10.1016/j.micpath.2017.06.014
71. Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel, Switzerland). 2020; 9(12). doi:10.3390/antiox9121309
72. Mieres-Castro D, Ahmar S, Shabbir R, Mora-Poblete F. Antiviral Activities of Eucalyptus Essential Oils: Their Effectiveness as Therapeutic Targets against Human Viruses. Pharmaceuticals (Basel). 2021; 14(12). doi:10.3390/ph14121210
73. Adeniyi BA, Ayepola OO, Adu FD. The antiviral activity of leaves of Eucalyptus camaldulensis (Dehn) and Eucalyptus torelliana (R. Muell). Pak J Pharm Sci. 2015; 28(5): 1773-1776.
74. Van Vuuren SF, Docrat Y, Kamatou GPP, Viljoen AM. Essential oil composition and antimicrobial interactions of understudied tea tree species. South African J Bot. 2014; 92: 7-14. doi:https://doi.org/10.1016/j.sajb.2014.01.005
75. Muturi EJ, Selling GW, Doll KM, Hay WT, Ramirez JL. Leptospermum scoparium essential oil is a promising source of mosquito larvicide and its toxicity is enhanced by a biobased emulsifier. PLoS One. 2020; 15(2): e0229076. doi:10.1371/journal.pone.0229076
76. Reichling J, Koch C, Stahl-Biskup E, Sojka C, Schnitzler P. Virucidal activity of a beta-triketone-rich essential oil of Leptospermum scoparium (manuka oil) against HSV-1 and HSV-2 in cell culture. Planta Med. 2005; 71(12): 1123-1127. doi:10.1055/s-2005-873175
77. Brandão GC, Kroon EG, Duarte MGR, Braga FC, de Souza Filho JD, de Oliveira AB. Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart. Phytomedicine. 2010; 17(12): 926-929. doi:https://doi.org/10.1016/j.phymed.2010.03.004
78. Lin S, Wang X, Tang RWL, et al. The Extracts of Polygonum cuspidatum Root and Rhizome Block the Entry of SARS-CoV-2 Wild-Type and Omicron Pseudotyped Viruses via Inhibition of the S-Protein and 3CL Protease. Molecules. 2022; 27(12). doi:10.3390/molecules27123806
79. Yun-Ting Z, Xiao H, Yun-Zhong C, Jun-de LI, Kun YU. [Chemical constituents and their biosynthesis mechanisms of Polygonum cuspidatum]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J Chinese Mater medica. 2020; 45(18): 4364-4372. doi:10.19540/j.cnki.cjcmm.20200525.201
80. Xiao K, Xuan L, Xu Y, Bai D, Zhong D. Constituents from Polygonum cuspidatum. Chem Pharm Bull (Tokyo). 2002; 50(5): 605-608. doi:10.1248/cpb.50.605
81. da Silva G, Serrano R, Silva O. Maytenus heterophylla and Maytenus senegalensis, two traditional herbal medicines. J Nat Sci Biol Med. 2011; 2(1): 59-65. doi:10.4103/0976-9668.82320
82. Veloso CC, Soares GL, Perez AC, Rodrigues VG, Silva FC. Pharmacological potential of Maytenus species and isolated constituents, especially tingenone, for treatment of painful inflammatory diseases. Rev Bras Farmacogn. 2017; 27(4): 533-540. doi:https://doi.org/10.1016/j.bjp.2017.02.006
83. Murayama T, Eizuru Y, Yamada R, et al. Anticytomegalovirus activity of pristimerin, a triterpenoid quinone methide isolated from Maytenus heterophylla (Eckl. & Zeyh.). Antivir Chem Chemother. 2007; 18(3): 133-139. doi:10.1177/095632020701800303
84. Baggieri M, Gioacchini S, Borgonovo G, et al. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed Pharmacother. 2023; 168: 115682. doi:https://doi.org/10.1016/j.biopha.2023.115682
85. Iqbal S, Younas U, Chan KW, Zia-Ul-Haq M, Ismail M. Chemical Composition of Artemisia annua L. Leaves and Antioxidant Potential of Extracts as a Function of Extraction Solvents. Molecules. 2012;17:6020-6032. doi:10.3390/molecules17056020
86. Iqbal S, Younas U, Chan KW, Zia-Ul-Haq M, Ismail M. Chemical composition of Artemisia annua L. leaves and antioxidant potential of extracts as a function of extraction solvents. Molecules. 2012; 17(5): 6020-6032. doi:10.3390/molecules17056020
87. Fuzimoto AD. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J Integr Med. 2021; 19(5): 375-388. doi:10.1016/j.joim.2021.07.003
88. Pennisi R, Trischitta P, Costa M, Venuti A, Tamburello MP, Sciortino MT. Update of Natural Products and Their Derivatives Targeting Epstein–Barr Infection. Viruses. 2024; 16(1). doi:10.3390/v16010124
89. Tsai YC, Hohmann J, El-Shazly M, et al. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. J Ethnopharmacol. 2020; 250: 112493. doi:10.1016/j.jep.2019.112493
90. Noor-E-Tabassum, Das R, Lami MS, et al. Ginkgo biloba: A Treasure of Functional Phytochemicals with Multimedicinal Applications. Evid Based Complement Alternat Med. 2022; 2022: 8288818. doi:10.1155/2022/8288818
91. Ibrahim MA, Ramadan HH, Mohammed RN. Evidence that Ginkgo Biloba could use in the influenza and coronavirus COVID-19 infections. J Basic Clin Physiol Pharmacol. 2021; 32(3): 131-143. doi:10.1515/jbcpp-2020-0310
92. Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Batiha GES. Ginkgo biloba in the management of the COVID-19 severity. Arch Pharm (Weinheim). 2022; 355(10): e2200188. doi:10.1002/ardp.202200188
93. Borenstein R, Hanson BA, Markosyan RM, et al. Ginkgolic acid inhibits fusion of enveloped viruses. Sci Rep. 2020; 10(1): 4746. doi:10.1038/s41598-020-61700-0
94. forests-v11-i09_20240601.
95. Taib M, Rezzak Y, Bouyazza L, Lyoussi B. Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid Based Complement Alternat Med. 2020;2020:1920683. doi:10.1155/2020/1920683
96. Burlacu E, Nisca A, Tanase C. A Comprehensive Review of Phytochemistry and Biological Activities of Quercus Species. Forests. 2020;11:904. doi:10.3390/f11090904
97. Orege JI, Adeyemi SB, Tiamiyu BB, Akinyemi TO, Ibrahim YA, Orege OB. Artemisia and Artemisia-based products for COVID-19 management: current state and future perspective. Adv Tradit Med. 2023;23(1):85-96. doi:10.1007/s13596-021-00576-5
98. medicina-v57-i03_20240601.
99. Bisht D, Kumar D, Kumar D, Dua K, Chellappan DK. Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res. 2021;44(5):439-474. doi:10.1007/s12272-021-01328-4
100. Chang SJ, Huang SH, Lin YJ, Tsou YY, Wen CL. Antiviral activity of Rheum palmatum methanol extract and chrysophanol against Japanese encephalitis virus. Arch Pharm Res. 2014;37. doi:10.1007/s12272-013-0325-x
101. Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. South African J Bot. 2022;151:146-155. doi:10.1016/j.sajb.2022.09.043
102. Gao L, Xudong xu, Yang J. Chemical constituents of the roots of Rheum officinale. Chem Nat Compd. 2013;49:603-605. doi:10.1007/s10600-013-0689-7
103. Wang HY, Yang JS. [Studies on the chemical constituents of Arctium lappa L]. Yao Xue Xue Bao. 1993;28(12):911-917.
104. Al-Snafi A. The Pharmacological Importance and Chemical Constituents of Arctium Lappa. A Review. Int J Pharm Res Sch. 2014;3:663-670.
105. Yosri N, Alsharif SM, Xiao J, et al. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother. 2023;158:114104. doi:https://doi.org/10.1016/j.biopha.2022.114104
106. Hassan STS, Šudomová M, Mazurakova A, Kubatka P. Insights into Antiviral Properties and Molecular Mechanisms of Non-Flavonoid Polyphenols against Human Herpesviruses. Int J Mol Sci. 2022; 23(22). doi:10.3390/ijms232213891
107. Dias MM, Zuza O, Riani LR, et al. In vitro schistosomicidal and antiviral activities of Arctium lappa L. (Asteraceae) against Schistosoma mansoni and Herpes simplex virus-1. Biomed Pharmacother. 2017; 94: 489-498. doi:10.1016/j.biopha.2017.07.116
108. Lin JC, Cherng JM, Hung MS, Baltina LA, Baltina L, Kondratenko R. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection: Structure–activity relationships. Antiviral Res. 2008; 79(1): 6-11. doi:https://doi.org/10.1016/j.antiviral.2008.01.160
109. El-Saber Batiha G, Magdy Beshbishy A, El-Mleeh A, Abdel-Daim MM, Prasad Devkota H. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules. 2020;10(3). doi:10.3390/biom10030352
110. life-v12-i11_20240601.
111. Fiore C, Eisenhut M, Krausse R, et al. Antiviral effects of Glycyrrhiza species. Phytother Res. 2008; 22(2): 141-148. doi:10.1002/ptr.2295
112. Baba M, Shigeta S. Antiviral activity of glycyrrhizin against varicella-zoster virus in vitro. Antiviral Res. 1987; 7(2): 99-107. doi:https://doi.org/10.1016/0166-3542(87)90025-8
113. Lin JC, Cherng JM, Hung MS, Baltina LA, Baltina L, Kondratenko R. Inhibitory effects of some derivatives of glycyrrhizic acid against Epstein-Barr virus infection: structure-activity relationships. Antiviral Res. 2008;79(1):6-11. doi:10.1016/j.antiviral.2008.01.160
114. Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action. Antiviral Res. 2005; 68(3): 124-134. doi:10.1016/j.antiviral.2005.08.002
115. Pascual-Villalobos MJ, Röbbelen G, Correal E, Ehbrecht-von Witzke S. Performance test of Euphorbia lagascae Spreng., an oilseed species rich in vernolic acid, in southeast Spain. Ind Crops Prod. 1992; 1(2): 185-190. doi:https://doi.org/10.1016/0926-6690(92)90017-P
116. Edqvist J, Farbos I. Characterization of a Euphorbia lagascae epoxide hydrolase gene that is induced early during germination. Biochem Soc Trans. 2000; 28(6): 855-857.
117. Puneeth H, Chandra S. A review on potential therapeutic properties of Pomegranate (Punica granatum L.). Plant Sci Today. 2020; 7: 9. doi:10.14719/pst.2020.7.1.619
118. Angamuthu D, Purushothaman I, Kothandan S, Swaminathan R. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to Human Herpes Virus-3. Eur J Integr Med. 2019; 28. doi:10.1016/j.eujim.2019.04.008
119. Alexova R, Alexandrova S, Dragomanova S, et al. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L. Molecules. 2023; 28(9). doi:10.3390/molecules28093772
120. Salles TS, Meneses MDF, Caldas LA, et al. Virucidal and antiviral activities of pomegranate (Punica granatum) extract against the mosquito-borne Mayaro virus. Parasit Vectors. 2021; 14(1): 443. doi:10.1186/s13071-021-04955-4
121. Iravani S, Zolfaghari B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res Pharm Sci. 2011; 6(1): 1-11.
122. Iravani S, Zolfaghari B. Pharmaceutical and nutraceutical effects of Pinus pinaster bark extract. Res Pharm Sci. 2011; 6:1-11.
123. Oh YJ, Kim YS, Kim JW, Kim DW. Antibacterial and Antiviral Properties of Pinus densiflora Essential Oil. Foods. 2023;12(23). doi:10.3390/foods12234279
124. Bishop CD. Antiviral Activity of the Essential Oil of Melaleuca alternifolia (Maiden amp; Betche) Cheel (Tea Tree) Against Tobacco Mosaic Virus. J Essent Oil Res. 1995; 7(6): 641-644. doi:10.1080/10412905.1995.9700519
125. Carson CF, Hammer KA, Riley T V. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev. 2006; 19(1): 50-62. doi:10.1128/CMR.19.1.50-62.2006
126. Garozzo A, Timpanaro R, Bisignano B, Furneri PM, Bisignano G, Castro A. In vitro antiviral activity of Melaleuca alternifolia essential oil. Lett Appl Microbiol. 2009; 49(6): 806-808. doi:10.1111/j.1472-765X.2009.02740.x
127. Borotová P, Galovičová L, Vukovic NL, Vukic M, Tvrdá E, Kačániová M. Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants (Basel, Switzerland). 2022; 11(4). doi:10.3390/plants11040558
128. Adnan M, Ahmad A, Ahmed DA, Khalid N, Hayat I, Ahmed I. Chemical composition and sensory evaluation of tea (Camellia sinensis) commercialized in Pakistan. Pakistan J Bot. 2013; 45: 901-907.
129. Reto M, Figueira ME, Filipe HM, Almeida CMM. Chemical Composition of Green Tea (Camellia sinensis) Infusions Commercialized in Portugal. Plant Foods Hum Nutr. 2007; 62(4): 139-144. doi:10.1007/s11130-007-0054-8
130. Reto M, Figueira ME, Filipe HM, Almeida CMM. Chemical composition of green tea (Camellia sinensis) infusions commercialized in Portugal. Plant Foods Hum Nutr. 2007; 62(4): 139-144. doi:10.1007/s11130-007-0054-8
131. Wang YQ, Li QS, Zheng XQ, Lu JL, Liang YR. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules. 2021; 26(13). doi:10.3390/molecules26133962
132. Xu J, Xu Z, Zheng W. A Review of the Antiviral Role of Green Tea Catechins. Molecules. 2017; 22(8). doi:10.3390/molecules22081337