Author(s):
Snigdharani Dash, Smaranika Pattnaik
Email(s):
smaranika2010@suniv.ac.in , drsmaranikapattnaik@gmail.com
DOI:
10.52711/0974-360X.2025.00060
Address:
Snigdharani Dash2, Smaranika Pattnaik1
1Department of Biotechnology and Bioinformatics, School of Life Sciences, Sambalpur University, Burla, Sambalpur, 768017, Odisha, India.
2Laboratory of Medical Microbiology, School of Life Sciences, Sambalpur University, Burla, Sambalpur, 768017, Odisha, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
In view of re-emerged drug resistance conferred by bacteria of medical importance towards the conventional antibiotics, it is high time to switch over the alternate medicaments specifically of plant origin. Medicinal and aromatic plants are a sub cluster of medicinal plants are rich source of phytoconstituents, synthesized through secondary metabolite pathways, are found in constituted form in essential oils. In the process of drug designing, the active principles annotated with antibacterial activity are to be detected using various analytical tools, followed by antibacterial assays. This review work has highlighted the current scenario on putative antibacterial drug targets of essential oils, namely flagella, cell wall synthesizing proteins/enzymes, DNA associated enzymes, ribosome assembly enzymes, bacterial cell division proteins, which may be deciphered by various instrumentals like Scanning Electron microscopy, Fluoroscent microscopy and more so FACS is used to enumeration to reach a concrete goal.
Cite this article:
Snigdharani Dash, Smaranika Pattnaik. The Plant Essential oil Bacterial Targets: A Review. Research Journal of Pharmacy and Technology. 2025;18(1):388-2. doi: 10.52711/0974-360X.2025.00060
Cite(Electronic):
Snigdharani Dash, Smaranika Pattnaik. The Plant Essential oil Bacterial Targets: A Review. Research Journal of Pharmacy and Technology. 2025;18(1):388-2. doi: 10.52711/0974-360X.2025.00060 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-60
REFERENCES:
1. Usharani B. Extraction of Essential oils from Cymbopogon citratus using Organic solvents. Research Journal of Pharmacy and Technology. 2021; 14(11): 5709-12. DOI: 10.52711/0974-360X.2021.00992
2. Vaishali M, Geetha RV. Antibacterial activity of Orange peel oil on Streptococcus mutans and Enterococcus-An In-vitro study. Research Journal of Pharmacy and Technology. 2018; 11(2): 513-4. DOI: 10.5958/0974-360X.2018.00094.X
3. Sanghi DK, Tiwle R. Herbal drugs an emerging tool for novel drug delivery systems. Research Journal of Pharmacy and Technology. 2013; 6(9): 962-6.
4. Prakruthi KN, Ahalyadevi KH, Krishna KR, Sindhu KB, Paul A. Evaluation of Antimicrobial Activity of The Peel Extract of Psidium Guajava Fruit on Selected Bacterial Strains. Asian Journal of Pharmaceutical and Health Sciences. 2023; 13(1). DOI:10.5530/ajphs.2023.13.39
5. Saxena M, Saxena J, Nema R, Singh D, Gupta A. Phytochemistry of medicinal plants. Journal of Pharmacognosy and Phytochemistry. 2013; 1(6): 168-82.
6. Al-Snafi AE. Chemical constituents and pharmacological effects of Asclepiascurassavica–A review. Asian Journal of Pharmaceutical Research. 2015; 5(2): 83-7.
7. Bermúdez-Puga S, Dias M, de Oliveira TF, Mendonça CM, de Almeida SR, Rozas EE, do Nascimento CA, Mendes MA, de Azevedo PO, Almeida JR, Proaño-Bolaños C. Dual antibacterial mechanism of [K4K15] CZS-1 against Salmonella Typhimurium: a membrane active and intracellular-targeting antimicrobial peptide. Frontiers in Microbiology. 2023; 14. https://doi.org/10.3389/fmicb.2023.1320154
8. Tang C, Chen J, Zhang L, Zhang R, Zhang S, Ye S, Zhao Z, Yang D. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. International Journal of Medical Microbiology. 2020; Jul 1; 310(5): 151435. https://doi.org/10.1016/j.ijmm.2020.151435
9. Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry. 2008; Mar 11; 47(10): 3225-34.https://doi.org/10.1021/bi7018546
10. Rastogi N, Domadia P, Shetty S, Dasgupta D. Screening of natural phenolic compounds for potential to inhibit bacterial cell division protein FtsZ. 2008; Mar: 46 (11): 783-787. http://nopr.niscpr.res.in/handle/123456789/4649
11. Pattnaik S, Subramanyam VR, Kole C. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios. 1996; Jan 1; 86(349): 237-46.https://www.altmetric.com/details/244029
12. Pattnaik S, Mohapatra AK. Phyto chemical abundance (in%) and in silico based molecular target interaction aptitude of essential oil components. InBiotechnology and Biological Sciences: Proceedings of the 3rd International Conference of Biotechnology and Biological Sciences (BIOSPECTRUM 2019), August 8-10, 2019, Kolkata, India 2019; Nov 20l (p. 378). CRC Press.eBook ISBN9781003001614
13. Pradhan S, Pattnaik S. Phytochemical Screening of Components Present Floral Essential oil of an Indigenous Variety of Lantana camara, Linn (Verbenaceae). Research Journal of Pharmacognosy and Phytochemistry. 2017; 9(4): 203-9. DOI: 10.5958/0975-4385.2017.00037.1
14. Pattnaik S, Das SN, Behera N. Characterization of an air borne bacterium to different environmental Parameters. Research Journal of Pharmacognosy and Phytochemistry. 2010;2(4):297-300.
15. Kumar R, Pundir S. Bacterial cell, classification and required essential contents for growth. Asian Journal of Pharmacy and Technology. 2021; 11(2): 181-7. DOI: 10.52711/2231-5713.2021.00030
16. Sun H, Wang M, Liu Y, Wu P, Yao T, Yang W, Yang Q, Yan J, Yang B. Regulation of flagellar motility and biosynthesis in enterohemorrhagic Escherichia coli O157: H7. Gut Microbes. 2022 Dec 31; 14(1): 2110822. https://doi.org/10.1080/19490976.2022.2110822
17. Suerbaum S, Coombs N, Patel L, Pscheniza D, Rox K, Falk C, Gruber AD, Kershaw O, Chhatwal P, Brönstrup M, Bilitewski U. Identification of antimotilins, novel inhibitors of Helicobacter pylori flagellar motility that inhibit stomach colonization in a mouse model. Mbio. 2022; Apr 26; 13(2): e03755-21. DOI: https://doi.org/10.1128/mbio.03755-21
18. Bai Y, Wang W, Shi M, Wei X, Zhou X, Li B, Zhang J. Novel Antibiofilm Inhibitor Ginkgetin as an Antibacterial Synergist against Escherichia coli. International Journal of Molecular Sciences. 2022; Aug 8; 23(15): 8809. https://doi.org/10.3390/ijms23158809
19. Feng C, Huang Y, He W, Cheng X, Liu H, Huang Y, Ma B, Zhang W, Liao C, Wu W, Shao Y. Tanshinones: First-in-class inhibitors of the biogenesis of the type 3 secretion system needle of Pseudomonas aeruginosa for antibiotic therapy. ACS Central Science. 2019; Jun 26; 5(7): 1278-88. https://doi.org/10.1021/acscentsci.9b00452
20. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell wall hydrolases in bacteria: insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Frontiers in Microbiology. 2019; Feb 28; 10: 331. https://doi.org/10.3389/fmicb.2019.00331
21. DeMeester KE, Liang H, Zhou J, Wodzanowski KA, Prather BL, Santiago CC, Grimes CL. Metabolic Incorporation of N‐Acetyl Muramic Acid Probes into Bacterial Peptidoglycan. Current Protocols in Chemical Biology. 2019; Dec; 11(4): e74. https://doi.org/10.1002/cpch.74
22. Rani N, Kumar C, Arunachalam A, PTV L. Rutin as a potential inhibitor to target peptidoglycan pathway of Staphylococcus aureus cell wall synthesis. Clin. Microbiol. Infect. Dis. 2018; Nov 26; 3(1000142.10): 15761. doi: 10.15761/CMID.1000142
23. Spencer AC, Panda SS. DNA Gyrase as a Target for Quinolones. Biomedicines. 2023; Jan 27; 11(2): 371. https://doi.org/10.3390/biomedicines11020371
24. Jagatap, V.R., Ahmad, I., Sriram, D., Kumari, J., Adu, D.K., Ike, B.W., Ghai, M., Ansari, S.A., Ansari, I.A., Wetchoua, P.O.M. and Karpoormath, R. Isoflavonoid and furanochromone natural products as potential DNA gyrase inhibitors: computational, spectral, and antimycobacterial studies. ACS Omega. 2023; 8(18): 16228-16240. https://doi.org/10.1021/acsomega.3c00684
25. Kalhor H, Sadeghi S, Marashiyan M, Kalhor R, Aghaei Gharehbolagh S, AkbariEidgahi MR, Rahimi H. Identification of new DNA gyrase inhibitors based on bioactive compounds from streptomyces: structure-based virtual screening and molecular dynamics simulations approaches. Journal of Biomolecular Structure and Dynamics. 2020; Feb 11; 38(3): 791-806. https://doi.org/10.1080/07391102.2019.1588784
26. Katz L, Ashley GW. Translation and protein synthesis: macrolides. Chemical reviews. 2005; Feb 9; 105(2): 499-528. https://doi.org/10.1021/cr030107f
27. Nikolay R, Schmidt S, Schlömer R, Deuerling E, Nierhaus KH. Ribosome assembly as antimicrobial target. Antibiotics. 2016; May 27; 5(2): 18. https://doi.org/10.3390/antibiotics5020018
28. Mahone CR, Goley ED. Bacterial cell division at a glance. Journal of cell science. 2020; Apr 1; 133(7): jcs237057.https://doi.org/10.1242/jcs.237057
29. Casiraghi A, Suigo L, Valoti E, Straniero V. Targeting bacterial cell division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ. Antibiotics. 2020; Feb 7; 9(2): 69. https://doi.org/10.3390/antibiotics9020069
30. Vedyaykin AD, Ponomareva EV, Khodorkovskii MA, Borchsenius SN, Vishnyakov IE. Mechanisms of bacterial cell division. Microbiology. 2019; May; 88: 245-60. https://doi.org/10.1134/S0026261719030159
31. Whitley KD, Grimshaw J, Holden S. Watching Bacterial Cell Division One Molecule at a Time in Vertical Cells. 2023: 1070-1070. https://doi.org/10.1093/micmic/ozad067.549
32. Vashistha H, Jammal-Touma J, Singh K, Rabin Y, Salman H. Bacterial cell-size changes resulting from altering the relative expression of Min proteins. Nature Communications. 2023; Sep 15; 14(1): 5710. https://doi.org/10.1038/s41467-023-41487-0
33. Perez AJ, Villicana JB, Tsui HC, Danforth ML, Benedet M, Massidda O, Winkler ME. FtsZ-ring regulation and cell division are mediated by essential EzrA and accessory proteins ZapA and ZapJ in Streptococcus pneumoniae. Frontiers in Microbiology. 2021; Dec 2; 12: 780864. https://doi.org/10.3389/fmicb.2021.780864
34. Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future microbiology. 2020; Apr; 15(9): 801-31. https://doi.org/10.2217/fmb-2019-0348
35. Mateos-Gil P, Tarazona P, Vélez M. Bacterial cell division: modeling FtsZ assembly and force generation from single filament experimental data. FEMS microbiology reviews. 2019; Jan; 43(1): 73-87. https://doi.org/10.1093/femsre/fuy039
36. Battaje RR, Piyush R, Pratap V, Panda D. Models versus pathogens: how conserved is the FtsZ in bacteria?. Bioscience Reports. 2023; Feb; 43(2): BSR20221664. https://doi.org/10.1042/BSR20221664
37. Frost I, Smith WP, Mitri S, Millan AS, Davit Y, Osborne JM, Pitt-Francis JM, MacLean RC, Foster KR. Cooperation, competition and antibiotic resistance in bacterial colonies. The ISME journal. 2018; Jun; 12(6): 1582-93. https://doi.org/10.1038/s41396-018-0090-4
38. Maso L, Vascon F, Chinellato M, Goormaghtigh F, Bellio P, Campagnaro E, Van Melderen L, Ruzzene M, Pardon E, Angelini A, Celenza G. Nanobodies targeting LexAautocleavage disclose a novel suppression strategy of SOS-response pathway. Structure. 2022; Nov 3; 30(11): 1479-93. DOI:https://doi.org/10.1016/j.str.2022.09.004
39. Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sciences. 2020 Dec 1;262:118562.https://doi.org/10.1016/j.lfs.2020.118562
40. Geisinger E, Mortman NJ, Dai Y, Cokol M, Syal S, Farinha A, Fisher DG, Tang AY, Lazinski DW, Wood S, Anthony J. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacterbaumannii cell envelope. Nature communications. 2020 Sep 9;11(1):4522.https://doi.org/10.1038/s41467-020-18301-2
41. Khan T, Sankhe K, Suvarna V, Sherje A, Patel K, Dravyakar B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine and Pharmacotherapy. 2018; Jul 1; 103: 923-38.https://doi.org/10.1016/j.biopha.2018.04.021
42. Zhang D, Yin F, Qin Q, Qiao L. Molecular responses during bacterial filamentation reveal inhibition methods of drug-resistant bacteria. Proceedings of the National Academy of Sciences. 2023 Jul 4; 120(27): e2301170120. https://doi.org/10.1073/pnas.2301170120
43. Kumar R. Microscopy, working and types. Asian Journal of Pharmacy and Technology. 2021; 11(3): 245-8. DOI: 10.52711/2231-5713.2021.00040
44. Suzuki K, Oho E. Special raster scanning for reduction of charging effects in scanning electron microscopy. Scanning: The Journal of Scanning Microscopies. 2014; May; 36(3): 327-33. https://doi.org/10.1002/sca.21112
45. Pattnaik S, Subramanyam VR, Rath CC. Effect of essential oils on the viability and morphology of Escherichia coli (SP-11). Microbios. 1995; Jan 1; 84(340):195-9. PMID: 8820244
46. Goldbeck JC, Victoria FN, Motta A, Savegnago L, Jacob RG, Perin G, Lenardao EJ, da Silva WP. Bioactivity and morphological changes of bacterial cells after exposure to 3-(p-chlorophenyl) thio citronellal. LWT-Food Science and Technology. 2014; Dec 1; 59(2): 813-9. https://doi.org/10.1016/j.lwt.2014.05.036
47. Huang J, Qian C, Xu H, Huang Y. Antibacterial activity of Artemisia asiatica essential oil against some common respiratory infection causing bacterial strains and its mechanism of action in Haemophilus influenzae. Microbial Pathogenesis. 2018; Jan 1; 114: 470-5. https://doi.org/10.1016/j.micpath.2017.12.032
48. Sanderson MJ, Smith I, Parker I, Bootman MD. Fluorescence microscopy. Cold Spring HarbProtoc. 2014; Oct 1; 2014(10): pdb.top071795. doi: 10.1101/pdb.top071795. PMID: 25275114; PMCID: PMC4711767.
49. vanTeeffelen S, Shaevitz JW, Gitai Z. Image analysis in fluorescence microscopy: bacterial dynamics as a case study. Bioessays. 2012; May; 34(5): 427-36. https://doi.org/10.1002/bies.201100148
50. Yoon SA, Park SY, Cha Y, Gopala L, Lee MH. Strategies of detecting bacteria using fluorescence-based dyes. Frontiers in chemistry. 2021; Aug 12; 9: 743923. https://doi.org/10.3389/fchem.2021.743923
51. Ambriz-Aviña V, Contreras-Garduño JA, Pedraza-Reyes M. Applications of flow cytometry to characterize bacterial physiological responses. BioMed Research International. 2014; Oct; 1-14. https://doi.org/10.1155/2014/461941
52. Galbusera L, Bellement-Theroue G, Urchueguia A, Julou T, van Nimwegen E. Using fluorescence flow cytometry data for single-cell gene expression analysis in bacteria. PLoS One. 2020; Oct 12; 15(10): e0240233. https://doi.org/10.1371/journal.pone.0240233
53. McHugh IO, Tucker AL. Flow cytometry for the rapid detection of bacteria in cell culture production medium. Cytometry Part A. 2007; Dec; 71(12): 1019-26. https://doi.org/10.1002/cyto.a.20488
54. Tian D, Wang C, Liu Y, Zhang Y, Caliari A, Lu H, Xia Y, Xu B, Xu J, Yomo T. Cell Sorting-Directed Selection of Bacterial Cells in Bigger Sizes Analyzed by Imaging Flow Cytometry during Experimental Evolution. International Journal of Molecular Sciences. 2023; Feb 7; 24(4): 3243. https://doi.org/10.3390/ijms24043243
55. Servain‐Viel S, Aknin ML, Domenichini S, Perlemuter G, Cassard AM, Schlecht‐Louf G, Moal VL. A flow cytometry method for safe detection of bacterial viability. Cytometry Part A. 2023; Oct 3. https://doi.org/10.1002/cyto.a.24794
56. Fernández-Fernández R, López-Igual R, Casadesús J, Sánchez-Romero MA. Analysis of Salmonella lineage-specific traits upon cell sorting. Frontiers in Cellular and Infection Microbiology. 2023; Mar 29; 13: 1146070. https://doi.org/10.3389/fcimb.2023.1146070