Author(s): Hari Soepriandono, Sugiharto, Manikya Pramudya, Farah Annisa Nurbani, Firli Rahmah Primula Dewi, Lim Vuanghao, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati

Email(s): alfiah-h@fst.unair.ac.id

DOI: 10.52711/0974-360X.2025.00057   

Address: Hari Soepriandono1, Sugiharto1, Manikya Pramudya1, Farah Annisa Nurbani1, Firli Rahmah Primula Dewi1, Lim Vuanghao2, Aunurohim3, Bayyinatul Muchtaromah4, Alfiah Hayati1*
1Department of Biology, Faculty of Science and Technology, University of Airlangga, Indonesia.
2Department of Toxicology, Advanced Medical and Dental Institute Universiti Sains Malaysia, Malaysia.
3Department of Biology, Faculty Science and Data Analitics Institut Teknologi Sepuluh Nopember, Indonesia.
4Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2025


ABSTRACT:
Nanoplastics of polystyrene (NPs) are widely dispersed and pose a serious concern as non-biodegradable pollutants to human health. Given our unintentional exposure to toxic chemicals in everyday life, it is crucial to evaluate their toxicity and inhibition. This can be achieved by employing exogenous antioxidants sourced from natural substances. We investigated the toxicity of NPs and the protective impact of exogenous antioxidants on the liver in an animal model. Each experimental group received NPs alone (10µL/kg, for 14 days) as negative control. Three additional treatment groups were exposed to a combination of NPs (for 14 days) along with Cinnamomum burmanii leaf extract (CLE) at concentrations of 100, 200, and 400mg/kg for 28 days, and one control group was used as a reference. All treatments were administrated via oral gavage. The toxic effects and protection from NPs and CLE were investigated based on the levels of SGOT, SGPT, bilirubin, and ALP in the blood serum and specific changes in the liver cells of Wistar rats. The results indicated oxidative damage caused by NPs exposure accompanied by disruptions in enzymatic biochemical parameters, levels of SGPT, SGOT, and ALP, with no changes in bilirubin levels. Histological changes in the liver revealed inflammation, necrotic cells, and chromosomal condensation as signals of increased cell proliferation. The addition of CLE could mitigate the oxidative damage induced by NPs. In conclusion, overall, our comprehensive observations indicate adverse effects of NPs exposure on hepatocyte structure and function. Increased levels of SGPT, SGOT, and ALP indicate liver disturbances, although bilirubin level remains unchanged. The addition of CLE (400 mg/kg) is capable of restoring the disturbance caused by NPs.


Cite this article:
Hari Soepriandono, Sugiharto, Manikya Pramudya, Farah Annisa Nurbani, Firli Rahmah Primula Dewi, Lim Vuanghao, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati. Protection of Exogenous Antioxidant of Cinnamomum burmanii as a Hepatoprotective on the Toxicological Responses of Nanoplastics in Rats (Rattus norvegicus L.). Research Journal of Pharmacy and Technology. 2025;18(1):365-1. doi: 10.52711/0974-360X.2025.00057

Cite(Electronic):
Hari Soepriandono, Sugiharto, Manikya Pramudya, Farah Annisa Nurbani, Firli Rahmah Primula Dewi, Lim Vuanghao, Aunurohim, Bayyinatul Muchtaromah, Alfiah Hayati. Protection of Exogenous Antioxidant of Cinnamomum burmanii as a Hepatoprotective on the Toxicological Responses of Nanoplastics in Rats (Rattus norvegicus L.). Research Journal of Pharmacy and Technology. 2025;18(1):365-1. doi: 10.52711/0974-360X.2025.00057   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-57


REFERENCES:
1.    Hayati A. Pramudya M. Soepriandono H. Astri AR. Kusuma MR. Maulidah S. Adriansyah W. Dewi FRP. Assessing the recovery of steroid levels and gonadal histopathology of tilapia exposed to polystyrene particle pollution by supplementary feed. Veterinary World. 2022; 15(2): 517-523. doi.org/ 10.14202/vetworld.2022.517-523.
2.    Triwahyudi H. Soehargo L. Muniroh L. Qolbi RN. 'Aini TQ. Kurnia RFZ. Putra PAD. Pramudya M. Muchtaromah B. Hayati A. Potential of Red Seaweed (Dichotomania obtusata) on Immune Response and Histopathology of Rat Testis Exposed to Nanoplastics. Tropical Journal Natural Product Research. 2023; 7(5): 2969-2973. doi.org/10.26538/tjnpr/v7i5.20.
3.    Ajmal Khan A. Jia Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience. 2023; 26(2): 106061. doi.org/10.1016/j.isci.2023.106061.
4.    Geum SW. Yeo M. Reduction in Toxicity of Polystyrene Nanoplastics Combined with Phenanthrene through Binding of Jellyfish Mucin with Nanoplastics. Nanomaterials. 2022; 12(9): 1427. doi.org/10.3390/nano12091427.
5.    Sukhanova A. Bozrova S. Sokolov P. Berestovoy M. Karaulov A. Nabiev I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters. 2018; 13: 44. doi.org/10.1186/s11671-018-2457-x.
6.    Xu JL. Lin X. Wang JJ. Gowen AA. A review of potential human health impacts of micro- and nanoplastics exposure. Science Total Environment. 2022; 851: 158111. doi.org/10.1016/j.scitotenv.2022.158111.
7.    Yin J. Ju Y. Qian H. Wang J. Miao X. Zhu Y. Zhou L. Ye L. Nanoplastics and Microplastics May Be Damaging Our Livers.  Toxics. 2022; 10:586. doi.org/10.3390/toxics10100586.
8.    Lai H. Liu X. Qu M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomat (Basel). 2022; 12(8):1298. doi.org/10.3390/nano12081298.
9.    Li Y. Liu Z. Li M. Jiang Q. Wu D. Huang Y. Jiao Y. Zhang M. Zhao Y. Effects of Nanoplastics on Antioxidant and Immune Enzyme Activities and Related Gene Expression in Juvenile Macrobrachium Nipponense. Journal of Hazardous Materials. 2020; 398: 122990. doi.org/10.1016/j.jhazmat.2020.122990.
10.    Hayati A. Pramudya M. Soepriandono H. Suhargo L. Dewi FRP. Muchtaromah B. Mwendolwa A. Supplementary Feed Potential on Histology and Immune Response of Tilapia (Oreochromis niloticus L.) Exposed to Microplastics. Sains Malaysiana. 2023; 52(6): 1607–1617. Sains Malaysiana 52(6)(2023): 1607-1617. doi.org/10.17576/jsm-2023-5206-01.
11.    Rui L. Energy Metabolism in the Liver. Comprehensive Physiology. 2014; 4: 177–197. doi.org/10.1002/cphy.c130024.
12.    Han H. Kang G. Kim JS. Choi BH. Koo S. Regulation of glucose metabolism from a liver-centric perspective. Experimental and Molecular Medicine. 2016; 48(3):e218. doi.org/10.1038/emm.2015.122.
13.    Gu H. Wang S. Wang X. Yu X. Hu M. Huang W. Wang Y. Nanoplastics Impair the Intestinal Health of the Juvenile Large Yellow Croaker Larimichthys Crocea. Journal of Hazardous Materials. 2020; 397: 122773. doi.org/ 10.1016/j.jhazmat.2020.122773.
14.    Paulusma CC. Lamers WH. Broer S. van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochemical Pharmacology. 2022; 201: 115074. doi.org/10.1016/j.bcp.2022.115074.
15.    Yasin NAE. El-Naggar M. Ahmed ZSO. Galal MK. Rashad MM. Youssef AM. Elleithy EMM. Exposure to Polystyrene nanoparticles induces liver damage in rat via induction of oxidative stress and hepatocyte apoptosis. Environmental Toxicology and Pharmacology. 2022; 94: 103911. doi.org/10.1016/j.etap.2022.103911.
16.    Farzaei MH. Zobeiri M. Parvizi F. El-Senduny FF. Marmouzi I. Coy-Barrera E. Naseri R. Nabavi SM. Rahimi R. Abdollahi M. Curcumin in Liver Diseases: A Systematic Review of the Cellular Mechanisms of Oxidative Stress and Clinical Perspective. Nutrients. 2018; 10(7): 855. doi.org/10.3390/nu10070855.
17.    Deng Y. Zhang Y. Lemos B. Ren H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Scientific Reports. 2017; 7: 46687. doi.org/10.1038/srep46687.
18.    Aravind R. Aneesh TP. Bindu AR. Bindu K. Estimation of Phenolics and Evaluation of Antioxidant activity of Cinnamomum malabatrum (Burm.F).Blume. Asian Journal of Research Chemistry. 2012; 5(5): 628-632.
19.    Aravind R. Bindu AR. Bindu K. Alexeyena V. GC-MS Analysis of the Bark Essential Oil of Cinnamomum malabatrum (Burman. F) Blume. 2014; 7(7): 754-759
20.    Arikan B. Ozfidan-Konakci C. Yildiztugay E. Turan M. Cavusoglu H. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. Environmental Pollution. 2022; 311: 119851. doi.org/10.1016/j.envpol.2022.119851.
21.    Rangasamy P. Hansiya VS. Maheswari PU. Suman T. Geetha N. Phytochemical Analysis and Evaluation of In vitro Antioxidant and Anti-urolithiatic Potential of various fractions of Clitoria ternatea L. Blue Flowered Leaves. Asian Journal of Pharmaceutical Analysis. 2019; 09(02): 67-76. doi.org/ 0.5958/2231-5675.2019.00014.0
22.    Muthukumaran P. Shanmuganathan P. Malathi C. In Vitro Antioxidant Evaluation of Mimosa pudica. Asian Journal of Pharmaceutical Research. 2011; 1(2): 44-46
23.    Valli G. Jeyalaksmi M. Preliminary Phytochemical and Antioxidant Study of Odina woodier Leaf Extract. Asian Journal of Pharmaceutical Research. 2012; 2(4): 153-155
24.    Samal PK. Antioxidant activity of Strobilanthes asperrimus in albino rats Asian Journal of Pharmaceutical Research. 2013; 3(2): 71-74
25.    Narasimhan R. Sathiyamoorthy M. 2016. Phytochemical Screening and Antioxidant Studies in the Pulp Extracts of Cucurbita maxima. Asian Journal of Pharmaceutical Research. 2016; 6(1):1-4. doi.org/10.5958/2231-5691.2016.00001.0
26.    Abriyani E. Fikayuniar L. 2020. Screening Phytochemical, Antioxidant Activity and Vitamin C Assay from  Bungo perak-perak (Begonia versicolar Irmsch) leaves. Asian Journal of Pharmaceutical Research. 2020; 10(3): 183-187. doi.org/10.5958/2231-5691.2020.00032.5
27.    Muhammad DRA. Tuenter E. Patria GD. Foubert K. Pieters L. Dewettinck K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chemistry. 2021; 15(340): 127983. doi.org/10.1016/j.foodchem.2020.127983.
28.    Khedkar S, Ahmad Khan M. Aqueous Extract of Cinnamon (Cinnamomum spp.): Role in Cancer and Inflammation. Evidence-Based Complementary and Alternative Medicine. 2023; 5467342. doi.org/10.1155/2023/5467342
29.    Liu Z. Li H. Cui G. Wei M. Zou Z. Ni H. Efficient extraction of essential oil from Cinnamomum burmannii leaves using enzymolysis pretreatment and followed by microwave-assisted method. Food Science and Technology. 2021; 147: 111497. doi.org/10.1016/j.lwt.2021.111497.
30.    Cornelia M. Tunardy AM. Sinaga WSL. The Effect of Cinnamon Extract (Cinnamomum burmanii L.) Addition Towards the Characteristics of Soy Milk Ice Cream. Advances in Biological Science Research. 2022; 16. doi.org/10.2991/absr.k.220101.006.
31.    Tabarasu AM. Biriş SŞ. Găgeanu I. Anghelache D. Baltatu C. Persu C. Methods Of Extracting The Active Principles From Medicinal And Aromatic Plants – A Review. Acta Technica Corviniensis – Bulletin Of Engineering. 2020; 2: 23-27.
32.    Liu W. Zhang B. Yao Q. Feng X. Shen T. Guo P. Wang P. Bai Y. Li B. Wang P. Li R. Qu Z. Liu N. Toxicological effects of micro/nano-plastics on mouse/rat models: a systematic review and meta-analysis. Frontiers in Public Health. 2023; 11: 1103289. doi.org/10.3389/fpubh.2023.1103289.
33.    Sebai H. Rtibi K. Selmi S. Jridi M. Balti R. Marzouki L. Modulating and opposite actions of two aqueous extracts prepared from Cinnamomum cassia L. bark and Quercus ilex L. on the gastrointestinal tract in rats. RSC Advances. 2019; 9: 21695-21706. doi.org/10.1039/c9ra02429h.
34.    Kobayashi A. Suzuki Y. Sugai S. Specificity of transaminase activities in the prediction of drug induced hepatotoxicity. Journal of Toxicological Science. 2020; 45(9): 515-517. doi.org/10.2131/jts.45.515.
35.    Kik K. Bukowska BZ. Sicinska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environmental Pollution. 2020; 262: 114297. doi.org/10.1016/j.envpol.2020.114297.
36.    Hollóczki O. Gehrke S. Can Nanoplastics Alter Cell Membranes? Chemphyschem. 2020; 21(1): 9-12. doi.org/ doi.10.1002/cphc.201900481.
37.    Yan L, Yu Z, Lin P, Qiu S, He L, Wu Z, Ma L, Gu Y, He L, Dai Z, Chou C, Hong P, Li C. Polystyrene nanoplastics promote the apoptosis in Caco-2 cells induced by okadaic acid more than microplastics. Ecotoxicology Environmental Safety. 2023; 249: 114375. doi.org/ doi.org/10.1016/j.ecoenv.2022.114375.
38.    Kalas MA. Chavez L. Leon M. Taweesedt PT. Surani S.  Abnormal liver enzymes: A review for clinicians. World Journal of Hepatology. 2021; 13(11): 1688-1698. doi.org/10.4254/wjh.v13.i11.1688.
39.    Antonin W. Neumann H. Chromosome condensation and decondensation during mitosis. Current Opinion in Cell Biology. 2016; 40: 15–22. doi.org/ 10.1016/j.ceb.2016.01.013.
40.    Manogaran Y. Jagadeesan D. Narain K. Kumari U. Anand P. Shanmugavelu S. Antibacterial Response of Cinnamomum iners Leaves Extract and Cinnamic Acid Derivative against Pathogens that Triggers Periimplantitis. Research Journal of Pharmacy and Technology. 2023; 16(3): 1491-0. doi.org 0.52711/0974-360X.2023.00242/.
41.    Gauttam V. Munjal K. Arora A. Mujwar S. Rani I. Gupta S. Mir SR. A Review on Pharmacological Activities and Recent Patents on Cinnamomum species. Research Journal of Pharmacy and Technology. 2023; 16(7): 3489-3. doi.org/ 10.52711/0974-360X.2023.00576.
42.    Phong HX. Viet NT. Quyen NTN. Thinh PV. NM Trung. Nga TTK. Phytochemical screening, total phenolic, flavonoid contents, and antioxidant activities of four spices commonly used in Vietnamese traditional medicine. Materials Today-Proceedings. 2022; 56: A1–A5. doi.org/10.1016/j.matpr.2021.12.142.
43.    Roy A. Bhoumik D. Sahu RK. Dwivedi J. 2014. Phytochemical Screening and Antioxidant Activity of Sesbania grandiflora Leaves Extracts. Asian Journal of Research in Pharmaceutical Sciences. 2014; 4(1): 16-21
44.    Aravind R. Bindu AR. Bindu K, Kanthlal S. Anilkumar B. Anti-Inflammatory Evaluation of the Cinnamomum malabatrum (Burm. F).Blume Leaves using Carrageenan Induced Rat Paw Oedema Method. Research Journal of Pharmacy and Technology. 2013; 6(7): 746-748


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available