Author(s): Shom Prakash Kushwaha, Syed Misbahul Hasan, Kuldeep Singh, Arun Kumar, Muhammad Arif

Email(s): deanphar@iul.ac.in

DOI: 10.52711/0974-360X.2025.00005   

Address: Shom Prakash Kushwaha, Syed Misbahul Hasan*, Kuldeep Singh, Arun Kumar, Muhammad Arif
Faculty of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2025


ABSTRACT:
Alteration in glycemic levels is known to modulate immune function. Regulatory T cell’s energy generation can be increased by mitochondria. Unwanted inflammation is brought on when mitochondrial danger-associated molecules are produced without an infection being present. Immuno-metabolism is the term for metabolic processes that support the cellular differentiation of immune components and/or disease development caused by inflammation. In type 2 diabetes mellitus, myeloid cells experience metabolic stress and causes beta-cell failure. The proportion and functioning of regulatory T cells fall due to decreased number of Treg cells. Insulin resistance and other metabolic diseases are influenced by T-reg cell depletion. The persistent low-grade inflammatory syndrome accompanying diabetes results from this insufficient anti-inflammatory response. Interleukin-35 and Interleukin-10, two anti-inflammatory cytokines, are known to prevent acute and protracted endothelial cell activation caused by reactive oxygen species while protecting the trained immune system. Inflammation is a key indicator of diabetes since it significantly raises morbidity and death. Conventional treatments provide incomplete protection from diabetes as well as diabetic complications. Novel approaches that look beyond the solitaire control of hyperglycemia and treat inflammation in conjugation with hyperglycemia may prove to be a more attractive tactic to counter type 2 diabetes especially those involving synergism.


Cite this article:
Shom Prakash Kushwaha, Syed Misbahul Hasan, Kuldeep Singh, Arun Kumar, Muhammad Arif. Managing Type 2 Diabetes Mellitus by Coupling Immunity Modulatory and Antidiabetic properties. Research Journal of Pharmacy and Technology. 2025;18(1):33-8. doi: 10.52711/0974-360X.2025.00005

Cite(Electronic):
Shom Prakash Kushwaha, Syed Misbahul Hasan, Kuldeep Singh, Arun Kumar, Muhammad Arif. Managing Type 2 Diabetes Mellitus by Coupling Immunity Modulatory and Antidiabetic properties. Research Journal of Pharmacy and Technology. 2025;18(1):33-8. doi: 10.52711/0974-360X.2025.00005   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-5


REFERENCES:
1.    Alam N. Agrawal OP. Rimpi. Alam P. Agrawal S. Kaushik M. Dhari JS. Sharma OP. Natural Immunoenhancers. Research J. Pharm. and Tech. 2011; 4(10): 1526-32.
2.    Wu H. Ballantyne CM. Metabolic Inflammation and Insulin Resistance in Obesity. Circulation Research. 2020; 126(11): 1549-64. doi:10.1161/CIRCRESAHA.119.315896
3.    Morano AEVA. Dorneles GP. Peres A. Lira FS. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. Journal of Cellular Physiology. 2020; 235(4): 3169-88. doi:10.1002/jcp.29228
4.    Faas MM. de Vos P. Mitochondrial function in immune cells in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2020; 1866(10): 165845. doi:10.1016/j.bbadis.2020.165845
5.    Ashish A. Shah A. Pandey SJ. Interaction between oxidative stress and diabetes: a mini-review. J Diabetes Metab Disord Control. 2020; 7(2): 58-61.
6.    Mahlangu T. Dludla PV. Nyambuya TM. et al. A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine. 2020; 126: 154892. doi:10.1016/j.cyto.2019.154892
7.    Moradi N. Fadaei R. Rashidbeygi E. et al. Evaluation of changing the pattern of CTRP5 and inflammatory markers levels in patients with coronary artery disease and type 2 diabetes mellitus. Archives of Physiology and Biochemistry. 2022; 128(4): 964-9. doi:10.1080/13813455.2020.1742164
8.    Araújo LS. Silva MV. Silva CA. et al. Analysis of serum inflammatory mediators in type 2 diabetic patients and their influence on renal function. PLOS ONE. 2020; 15(3): e0229765. doi:10.1371/journal.pone.0229765
9.    Al-Jobouri RF. Assessment of immune response in patients with type 2 Diabetes mellitus. ATMPH. 2020; 23(02): 51-57. doi:10.36295/ASRO.2020.2329
10.    Olson NC. Doyle MF. Sitlani CM. et al. Associations of Innate and Adaptive Immune Cell Subsets With Incident Type 2 Diabetes Risk: The MESA Study. J Clin Endocrinol Metab. 2020; 105(3): e848-e857. doi:10.1210/clinem/dgaa036
11.    Prattichizzo F. Giuliani A. Sabbatinelli J. et al. Prevalence of residual inflammatory risk and associated clinical variables in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2020; 22(9): 1696-700.
12.    Shim K. Begum R. Yang C. Wang H. Complement activation in obesity, insulin resistance, and type 2 diabetes mellitus. World J Diabetes. 2020; 11(1): 1-12. doi:10.4239/wjd.v11.i1.1
13.    Diedisheim M. Carcarino E. Vandiedonck C. Roussel R. Jean-François G. Venteclef N. Regulation of inflammation in diabetes: From genetics to epigenomics evidence. Molecular Metabolism. Published online June 27, 2020; 101041. doi:10.1016/j.molmet.2020.101041
14.    Palella E. Cimino R. Pullano SA. et al. Laboratory Parameters of Hemostasis, Adhesion Molecules, and Inflammation in Type 2 Diabetes Mellitus: Correlation with Glycemic Control. International Journal of Environmental Research and Public Health. 2020; 17(1): 300. doi:10.3390/ijerph17010300
15.    Stubbs BJ. Newman JC. Ketogenic diet and adipose tissue inflammation—a simple story? Fat chance! Nat Metab. 2020; 2(1): 3-4. doi:10.1038/s42255-019-0164-2
16.    Graves DT. Ding Z. Yang Y. The impact of diabetes on periodontal diseases. Periodontology 2000. 2020; 82(1): 214-24. doi:10.1111/prd.12318
17.    RJPT - Comparative cytomorphometric analysis of oral mucosa in patients with Diabetes, patients with associated oral habits but with apparently normal mucosa and Control group. Accessed July 19, 2020. https://rjptonline.org/AbstractView.aspx?PID=2017-10-3-13
18.    Gurung M. Li Z. You H. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020; 51: 102590. doi:10.1016/j.ebiom.2019.11.051
19.    Massier L. Chakaroun R. Tabei S. et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut. Published online April 21, 2020; 69(10): 1796-806. doi:10.1136/gutjnl-2019-320118
20.    Bekhbat M. Treadway MT. Goldsmith DR. et al. Gene signatures in peripheral blood immune cells related to insulin resistance and low tyrosine metabolism define a sub-type of depression with high CRP and anhedonia. Brain, Behavior, and Immunity. 2020; 1; 88: 161-5. doi:10.1016/j.bbi.2020.03.015
21.    Mistry KN. Dabhi BK. Joshi BB. Evaluation of oxidative stress biomarkers and inflammation in pathogenesis of diabetes and diabetic nephropathy. Indian Journal of Biochemistry and Biophysics (IJBB). 2020; 57(1): 45-50. http://14.139.47.23/index.php/IJBB/article/view/31769
22.    Wu Y. Jia G. Wang B. et al. Fibroblast growth factor 1 ameliorates diabetes-induced splenomegaly via suppressing inflammation and oxidative stress. Biochemical and Biophysical Research Communications. 2020; 528(2): 249-255. doi:10.1016/j.bbrc.2020.05.145
23.    Nyambuya TM. Dludla PV. Mxinwa V. Nkambule BB. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Clinical Immunology. 2020; 210: 108313. doi:10.1016/j.clim.2019.108313
24.    Pinheiro-Machado E. Gurgul-Convey E. Marzec M. Immunometabolism in type 2 diabetes mellitus: tissue-specific interactions. aoms. Published online 2020. doi:10.5114/aoms.2020.92674
25.    Alfieri DF. Lehmann MF. Flauzino T. et al. Immune-Inflammatory, Metabolic, Oxidative, and Nitrosative Stress Biomarkers Predict Acute Ischemic Stroke and Short-Term Outcome. Neurotox Res. 2020; 38(2): 330-343. doi:10.1007/s12640-020-00221-0
26.    Di Conza G. Ho P-C. ER Stress Responses: An Emerging Modulator for Innate Immunity. Cells. 2020; 9(3): 695. doi:10.3390/cells9030695
27.    Eizirik DL. Pasquali L. Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nature Reviews Endocrinology. 2020; 16(7): 349-362. doi:10.1038/s41574-020-0355-7
28.    Zasłona Z. O’Neill LAJ. Cytokine-like Roles for Metabolites in Immunity. Molecular Cell. 2020; 78(5): 814-823. doi:10.1016/j.molcel.2020.04.002
29.    Mert T. Sahin E. Yaman S. Sahin M. Effects of immune cell-targeted treatments result from the suppression of neuronal oxidative stress and inflammation in experimental diabetic rats. Naunyn-Schmiedeberg’s Arch Pharmacol. 2020; 393(7): 1293-1302. doi:10.1007/s00210-020-01871-9
30.    Kartika R. Wibowo H. Impaired Function of Regulatory T Cells in Type 2 Diabetes Mellitus. Molecular and Cellular Biomedical Sciences. 2020; 4(1): 1-9. doi:10.21705/mcbs.v4i1.64
31.    Donate-Correa J. Luis-Rodríguez D. Martín-Núñez E. et al. Inflammatory Targets in Diabetic Nephropathy. Journal of Clinical Medicine. 2020; 9(2): 458. doi:10.3390/jcm9020458
32.    Ruiz de Morales JMG. Puig L. Daudén E. et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: An updated review of the evidence focusing in controversies. Autoimmunity Reviews. 2020; 19(1): 102429. doi:10.1016/j.autrev.2019.102429
33.    Roshanravan N. Alamdari NM. Jafarabadi MA. et al. Effects of oral butyrate and inulin supplementation on inflammation-induced pyroptosis pathway in type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Cytokine. 2020; 131: 155101. doi:10.1016/j.cyto.2020.155101
34.    Chen J. Tan W. Platelet activation and immune response in diabetic microangiopathy. Clinica Chimica Acta. 2020; 507: 242-247. doi:10.1016/j.cca.2020.04.042
35.    Yung JHM. Giacca A. Role of c-Jun N-terminal Kinase (JNK) in Obesity and Type 2 Diabetes. Cells. 2020; 9(3): 706. doi:10.3390/cells9030706
36.    Bashir H. Ahmad Bhat S. Majid S. et al. Role of inflammatory mediators (TNF-α, IL-6, CRP), biochemical and hematological parameters in type 2 diabetes mellitus patients of Kashmir, India. Med J Islam Repub Iran. 2020;34:5. doi:10.34171/mjiri.34.5
37.    Piantadosi CA. Mitochondrial DNA, oxidants, and innate immunity. Free Radical Biology and Medicine. 2020; 152: 455-461. doi:10.1016/j.freeradbiomed.2020.01.013
38.    Kushwaha SP. Gupta SK. Kumar S. Phytochemical screening of aqueous extract derived from Stevia rebaudiana leaves, Musa acuminata fruits and Solanum lycopersicum fruits. International Journal of Botany Studies, 2021; 6(2): 510-512.
39.    Ansari J. Kushwaha SP. Ansari VA. Singh K. Hasan SM. Agar well diffusion: A prominent method for in vitro screening of antimicrobials. International Journal of Botany Studies, 2021;6(5):836-839.
40.    Biscetti F. Nardella E. Cecchini AL. Flex A. Landolfi R. Biomarkers of vascular disease in diabetes: the adipose-immune system cross talk. Intern Emerg Med. 2020; 15(3): 381-393. doi:10.1007/s11739-019-02270-6
41.    Yang Y-L. Wu C-H. Hsu P-F. et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. European Journal of Clinical Investigation. 2020; 50(5): e13230. doi:10.1111/eci.13230
42.    Fest J. Ruiter R. Mulder M. et al. The systemic immune-inflammation index is associated with an increased risk of incident cancer—A population-based cohort study. International Journal of Cancer. 2020; 146(3): 692-698. doi:10.1002/ijc.32303
43.    Li X. Fang P. Sun Y. et al. Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biology. 2020; 28: 101373. doi:10.1016/j.redox.2019.101373
44.    Winer DA. Winer S. Shen L. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nature Medicine. 2011; 17(5): 610-617. doi:10.1038/nm.2353
45.    Itariu BK. Stulnig TM. Autoimmune Aspects of Type 2 Diabetes Mellitus - A Mini-Review. GER. 2014; 60(3): 189-196. doi:10.1159/000356747
46.    Derosa G. D’Angelo A. Maffioli P. Change of some oxidative stress parameters after supplementation with whey protein isolate in patients with type 2 diabetes. Nutrition. 2020; 73: 110700. doi:10.1016/j.nut.2019.110700
47.    Pratap R. Prakash Kushwaha S. Goel A. Ram VJ. An efficient synthesis of (E)-(2-arylpyrazino[1,2-a]pyrimidine-4-ylidene)acetonitriles and cyanomethyl appended pyrimidines. Tetrahedron Letters. 2007; 48(4): 549-553. doi:10.1016/j.tetlet.2006.11.136
48.    Pratap R. Roy AD. Kushwaha SP. Goel A. Roy R. Ram VJ. Guanidine and amidine mediated synthesis of bridgehead triazaphenalenes, pyrimidines and pyridines through domino reactions. Tetrahedron Letters. 2007; 48(33): 5845-5849. doi:10.1016/j.tetlet.2007.06.073.
49.    Kushwaha SP. Kumar P. Rawat SK. Abhishek. Parashar P. Hussain A. Singh P. Srivastava S. Tripathi K. A Preface Noesis Regarding General Health Awareness among the Rural Mass. Asian J. Pharm. Tech. 2012; 2(1): 12-14.
50.    Kushwaha SP. Singh K. Kumar A. Hasan SM. Compassionate role of synergism in herbal formulations. International Journal of Biology, Pharmacy and Allied Sciences. 2022; 11(12): 5689-5895.
51.    Salunkhe VR. Bhise SB. Synergistic Effect of Natural Sweetener on Antidiabetic Potential of Madhujeevan churna. Research J. Pharmacognosy and Phytochemistry 2009; 1(3): 204-208.
52.    Gupta E. Mohammed A. Purwar S. Rizvi SI. Sundaram S. Diminution of oxidative stress in alloxan-induced diabetic rats by Stevia rebaudiana. Res. J. Pharmacognosy and Phytochem. 2017; 9(3): 158-166.
53.    Sudha T. Devi DA. Kaviarasan L. Antihyperlipidemic effect of Stevia rebaudiana on Alloxan Induced Diabetic Rats. Asian J. Pharm. Tech. 2017; 7(4): 202-208.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available