Author(s):
Subhan Rullyansyah, Idha Kusumawati, Djoko Agus Purwanto
Email(s):
idha-k@ff.unair.ac.id
DOI:
10.52711/0974-360X.2025.00023
Address:
Subhan Rullyansyah1,2, Idha Kusumawati2,3*, Djoko Agus Purwanto2
1Doctoral Degree in Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
2Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga Nanizar Zaman Joenoes Building, Jl. Mulyorejo, Surabaya, 60115, East Java, Indonesia.
3Natural Product Drug Discovery and Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Nanizar Zaman Joenoes Building, Jl. Mulyorejo, Surabaya, 60115, East Java, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
D-dimer is a fibrin degradation residue that occurs when the fibrinolytic system disassembles a formed blood clot. Higher D-dimer levels may indicate an abnormal blood clotting state, potentially related to increased FXII activation. Anticoagulant drugs targeting FXIIa inhibition can efficiently reduce D-dimer levels and manage thrombotic diseases. Anticoagulants, such as warfarin, are associated with increased susceptibility to bleeding. The rhizome of Curcuma longa Linn. has shown important potential in its anti-thrombotic activity. This study aims to find secondary metabolites in C. longa that have an inhibitory ability against molecular processes associated with thrombotic symptoms. Experiments were conducted to predict in silico and ADMET. Candidate compounds obtained from knapsack families were evaluated according to the criteria outlined in Lipinski’s Theory. Thereafter, these compounds underwent docking investigations with FXIIa (6b77). The docking process was performed through Autodock 4.2 software. Additionally, the chemicals were analyzed using ADMET (http://www.swissadme.ch/). Bisdemethoxycurcumin and Demethoxycurcumin showed potential as FXIIa inhibitors, as indicated by the findings from the molecular docking investigation.
Cite this article:
Subhan Rullyansyah, Idha Kusumawati, Djoko Agus Purwanto. Molecular Docking and Secondary Metabolite ADMET Studies from Curcuma longa Linn. as an Antithrombotic. Research Journal of Pharmacy and Technology. 2025;18(1):152-8. doi: 10.52711/0974-360X.2025.00023
Cite(Electronic):
Subhan Rullyansyah, Idha Kusumawati, Djoko Agus Purwanto. Molecular Docking and Secondary Metabolite ADMET Studies from Curcuma longa Linn. as an Antithrombotic. Research Journal of Pharmacy and Technology. 2025;18(1):152-8. doi: 10.52711/0974-360X.2025.00023 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-23
REFERENCES:
1. Gan ZY, Callegari S, Cobbold SA, et al. Activation mechanism of PINK1. Nature. 2022; 602(7896): 328-335. doi:10.1038/s41586-021-04340-2
2. Yao Y, Cao J, Wang Q, et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J Intensive Care. 2020;8(1):49. doi:10.1186/s40560-020-00466-z
3. Zhan H, Chen H, Liu C, et al. Diagnostic Value of D-Dimer in COVID-19: A Meta-Analysis and Meta-Regression. Clin Appl Thromb. 2021; 27: 10760296211010976. doi:10.1177/10760296211010976
4. Schutte T, Thijs A, Smulders YM. Never ignore extremely elevated D-dimer levels: they are specific for serious illness. Neth J Med. 2016; 74(10): 443-448.
5. Jin T, Chen D, Chen Z, et al. Post-Thrombolytic D-Dimer Elevation Predicts Symptomatic Intracranial Hemorrhage and Poor Functional Outcome After Intravenous Thrombolysis in Acute Ischemic Stroke Patients. Neuropsychiatr Dis Treat. 2022;18:2737-2745. doi:10.2147/NDT.S389469
6. Moresco RN, Vargas LCR, Voegeli CF, Santos RCV. D-dimer and its relationship to fibrinogen/fibrin degradation products (FDPs) in disorders associated with activation of coagulation or fibrinolytic systems. J Clin Lab Anal. 2003;17(3):77-79. doi:10.1002/jcla.10072
7. Serrao A, Malfona F, Assanto GM, Orellana MGC, Santoro C, Chistolini A. Direct oral anticoagulants for the treatment of atrial fibrillation in patients with hematologic malignancies. J Thromb Thrombolysis. 2022;54(4):625-629. doi:10.1007/s11239-022-02702-9
8. Lancaster TR, Singer DE, Sheehan MA, et al. The Impact of Long-term Warfarin Therapy on Quality of Life: Evidence From a Randomized Trial. Arch Intern Med. 1991;151(10):1944-1949. doi:10.1001/archinte.1991.00400100032005
9. DeEugenio D, Kolman L, DeCaro M, et al. Risk of Major Bleeding with Concomitant Dual Antiplatelet Therapy After Percutaneous Coronary Intervention in Patients Receiving Long-Term Warfarin Therapy. Pharmacother J Hum Pharmacol Drug Ther. 2007;27(5):691-696. doi:https://doi.org/10.1592/phco.27.5.691
10. Fitzmaurice DA, Blann AD, Lip GYH. Bleeding risks of antithrombotic therapy. BMJ. 2002;325(7368):828 LP - 831. doi:10.1136/bmj.325.7368.828
11. Fang MC, Go AS, Prasad PA, et al. Anticoagulant treatment satisfaction with warfarin and direct oral anticoagulants for venous thromboembolism. J Thromb Thrombolysis. 2021;52(4):1101-1109. doi:10.1007/s11239-021-02437-z
12. Chackartchi T, Sachar Helft S, Findler M. [Dental treatment and anti-thrombotic therapy. Part II: the era of new anti-thrombotic drugs]. Refuat Hapeh Vehashinayim. 2014; 31(1): 43-49,63.
13. Sindhu TJ, Arathi KN, Akhilesh KJ, et al. Antiviral screening of Clerodol derivatives as COV 2 main protease inhibitor in Novel Corona Virus Disease: In silico approaches. Asian J Pharm Technol. 2020;10:60-64. https://api.semanticscholar.org/CorpusID:219403829
14. Zhang Y, Cao W, Jiang W, et al. Profile of natural anticoagulant, coagulant factor and anti-phospholipid antibody in critically ill COVID-19 patients. J Thromb Thrombolysis. 2020;50(3):580-586. doi:10.1007/s11239-020-02182-9
15. Sirisidthi K, Kosai P, Jiraungkoorskul K, Jiraungkoorskul W. Antithrombotic activity of turmeric (Curcuma longa): A review. Indian J Agric Res. 2016;50(2):101-106. doi:10.18805/ijare.v50i2.9586
16. Kim DC, Ku SK, Bae JS. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012;45(4):221-226. doi:10.5483/bmbrep.2012.45.4.221
17. Patadiya N, Vaghela V. Design, in-silico ADME Study and molecular docking study of novel quinoline-4-on derivatives as Factor Xa Inhibitor as Potential anti-coagulating agents. Asian J Pharm Res. 2022;12:207-211. doi:10.52711/2231-5691.2022.00034
18. Malladi SM, Pandey D, Yarla N sastry, Sadhu S. Molecular Docking Studies and In-silico ADMET Profile Analysis of Triphala Plant constituents Morin and 9, 10-anthraquinone as Potential Inhibitors of human Estrogen Receptor Alpha. Res J Pharm Technol. 2023;16:2023. doi:10.52711/0974-360X.2023.00621
19. Kaushik S, Dar L, Kaushik S, Kumar R, Kumar D, Yadav JP. In vitro and in silico Anti-dengue activity of Supercritical extract of medicinal plants against Dengue serotype-2. Res J Pharm Technol. Published online November 30, 2021:5895-5902. doi:10.52711/0974-360X.2021.01025
20. Gullapelli K, Maroju R, Merugu R. Synthesis, In-vitro and In-silico Anti-inflammatory activity of new Thiazole derivatives. Res J Pharm Technol. Published online August 6, 2021:4253-4260. doi:10.52711/0974-360X.2021.00738
21. Sindhu TJ, Akhilesh KJ, Jose A, Binsiya KP, Thomas B, Wilson E. Antibacterial Screening of Clerodendrum infortunatum leaves: Experimental and Molecular docking studies. Asian J Res Chem. 2020;13:128-132. https://api.semanticscholar.org/CorpusID:216466370
22. Saravanan P, Priyadharshini S, Pachiappan S. Molecular docking and synthesis of 1, 2, 4-triazin analogue of diclofenac as potential ligand for parkinson’s. Res J Pharmacol Pharmacodyn. 2018;10. doi:10.5958/2321-5836.2018.00002.2
23. Balakrishnan P, Shanmugam N. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An insilico approach. Res J Pharm Technol. 2019;12:3423-3427. doi:10.5958/0974-360X.2019.00579.1
24. Masi C, Naganathan S, Natarajan A, Pazhamalai V, Gemeda M. In Silico Anti- HIV Analysis of FTIR identified Bioactive compounds present in Vitex altissima L and Vitex leucoxylon L. Int J ChemTech Res. 2020;13:149-165. doi:10.20902/IJCTR.2019.130312
25. Mandloi N, Sharma R, Sainy J, Patil S. Exploring Structural Requirement for Design and Development of compounds with Antimalarial Activity via CoMFA, CoMSIA and HQSAR. Res J Pharm Technol. 2018;11:3341. doi:10.5958/0974-360X.2018.00614.5
26. Hankey GJ, Eikelboom JW. Dabigatran etexilate: A new oral thrombin inhibitor. Circulation. 2011;123(13):1436-1450. doi:10.1161/CIRCULATIONAHA.110.004424
27. Perzborn E, Roehrig S, Straub A, Kubitza D, Mueck W, Laux V. Rivaroxaban: A new oral factor xa inhibitor. Arterioscler Thromb Vasc Biol. 2010; 30(3):376-381. doi:10.1161/ATVBAHA.110.202978
28. Hillarp A, Gustafsson KM, Faxälv L, et al. Effects of the oral, direct factor Xa inhibitor apixaban on routine coagulation assays and anti‐FXa assays. J Thromb Haemost. 2014; 12(9): 1545-1553. doi:https://doi.org/10.1111/jth.12649
29. Tashchilova A, Podoplelova N, Sulimov A, et al. New Blood Coagulation Factor XIIa Inhibitors: Molecular Modeling, Synthesis, and Experimental Confirmation. Molecules. 2022;27(4). doi:10.3390/molecules27041234
30. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. 2009;30(16):2785-2791. doi:https://doi.org/10.1002/jcc.21256
31. Davoine C, Bouckaert C, Fillet M, Pochet L. Factor XII/XIIa inhibitors: Their discovery, development, and potential indications. Eur J Med Chem. 2020; 208: 112753. doi:https://doi.org/10.1016/j.ejmech.2020.112753
32. Dimić D, Milanović Ž, Jovanović G, et al. Comparative antiradical activity and molecular Docking/Dynamics analysis of octopamine and norepinephrine: the role of OH groups. Comput Biol Chem. 2020; 84: 107170. doi:https://doi.org/10.1016/j.compbiolchem.2019.107170
33. Međedović M, Mijatović A, Baošić R, et al. Synthesis, characterization, biomolecular interactions, molecular docking, and in vitro and in vivo anticancer activities of novel ruthenium(III) Schiff base complexes. J Inorg Biochem. 2023; 248: 112363. doi:https://doi.org/10.1016/j.jinorgbio.2023.112363
34. Cviji J. Structural properties of newly 4 , 7-dihydroxycoumarin derivatives as potential inhibitors of XIIa, Xa, IIa factors of coagulationˇ. 2024; 1298(November 2023). doi:10.1016/j.molstruc.2023.137049
35. Idris MO, Abechi SE, Shallangwa GA, Uzairu A. QSAR and Molecular Docking Studies of novel thiophene, pyrimidine, coumarin, pyrazole and pyridine derivatives as Potential Anti-Breast Cancer Agent. Turkish Comput Theor Chem. 2020;4(1):12-23. doi:10.33435/tcandtc.614263
36. Liu Y, Yu X, Chen J. Quantitative structure–property relationship of distribution coefficients of organic compounds. SAR QSAR Environ Res. 2020; 31(8): 585-596. doi:10.1080/1062936X.2020.1782468
37. Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. Molecular Docking, ADMET and Pharmacokinetic properties predictions of some di-aryl Pyridinamine derivatives as Estrogen Receptor (Er+) Kinase Inhibitors. Egypt J Basic Appl Sci. 2022; 9(1): 180-204. doi:10.1080/2314808X.2022.2050115
38. Nakamura Y, Mochamad Afendi F, Kawsar Parvin A, et al. KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 2014; 55(1): 1-9. doi:10.1093/pcp/pct176
39. Megantara S, Iwo MI, Levita J, Ibrahim S. Determination of ligand position in aspartic proteases by correlating tanimoto coefficient and binding affinity with root mean square deviation. J Appl Pharm Sci. 2016; 6(1): 125-129. doi:10.7324/JAPS.2016.600120
40. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64(SUPPL.): 4-17. doi:10.1016/j.addr.2012.09.019
41. Pires DEV, Blundell TL, Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015; 58(9): 4066-4072. doi:10.1021/acs.jmedchem.5b00104
42. Bhalani D V., Nutan B, Kumar A, Singh Chandel AK. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines. 2022; 10(9). doi:10.3390/biomedicines10092055
43. Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012; 2012(100 mL): 1-10. doi:10.5402/2012/195727
44. An T, Chen Y, Chen Y, Ma L, Wang J, Zhao J. A machine learning-based approach to ERα bioactivity and drug ADMET prediction. Front Genet. 2023; 13(January): 1-12. doi:10.3389/fgene.2022.1087273
45. Mortada S, Missioui M, Guerrab W, et al. New styrylquinoxaline: synthesis, structural, biological evaluation, ADMET prediction and molecular docking investigations. J Biomol Struct Dyn. 2023; 41(7): 2861-2877. doi:10.1080/07391102.2022.2040592