Author(s): Shradha Chaudhari, Shikha Gaikwad, Satish Polshettiwar, Shraddha Ram

Email(s): drshikhagaikwad@gmail.com

DOI: 10.52711/0974-360X.2025.00022   

Address: Shradha Chaudhari1, Shikha Gaikwad1*, Satish Polshettiwar2, Shraddha Ram2
1Department of Biosciences and Technology, School of Sciences and Environmental Studies,
Faculty of Sciences and Health Sciences, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune - 411038, Maharashtra, India.
2Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Survey No. 124, Kothrud, Pune - 411038, Maharashtra, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 1,     Year - 2025


ABSTRACT:
Glucans are polysaccharides of D-glucose interconnected by glycosidic linkages. Glucans persist in alpha (a-) and beta (ß-) forms. Alpha (a-) Glucans have alpha-glycosidic linkages whereas beta (ß-) Glucans have beta-glycosidic linkages. In ß-Glucans, D-glucose units linked with ß-D-(1?3), ß-D-(1?4), and ß-D-(1?6). ß-Glucans have more nutraceutical importance as compared to a-Glucans. The maximum concentration of ß-Glucans is reported in the eukaryote, Euglena (90%). The biological synthetic mechanism of ß-Glucans involves a cascade of enzymatic reactions and transporters. Numerous techniques are used for extraction of ß-Glucans however some reports highlight that combined acidic and alkaline extraction methods are more significant. Various characterization techniques play a noteworthy role in identifying and characterizing ß-Glucans. In the Ultraviolet-visible (UV/Vis) spectrophotometer, a peak at 260nm highlights the occurrence of a carbonyl group that confers ß-Glucans presence. In Fourier Transform Infrared Spectroscopy (FTIR), the absorbance peak at 978.24cm-1 suggests the existence of ß-Glucans due to C1–H bond deformation. In Nuclear Magnetic Resonance (NMR), resonance peaks at 104ppm, 69ppm, and 62ppm highlight ß- D-(1?3) and ß-D-(1?6) linkages between the glucose molecules suggesting the presence of ß-Glucans. In High-Performance Anion Exchange Chromatography (HPAEC), linkage ratios in the range of 2.27-2.39 specify glycosidic linkages suggesting ß-Glucans presence. In High-Performance Liquid Chromatography (HPLC), the retention time of 9.024 minutes indicates the degree of branching, size, and linkages signifying ß-Glucans occurrence. In Differential Scanning Calorimetry (DSC), the melting peak at 1180C, indicates variations in the physical state of the molecule with temperature that specifies ß-Glucans appearance. In X-ray diffraction (XRD), the strongest absorption at 200C, highlights its polymeric structure that represents the existence of ß-Glucans. The present review gives a deep insight into ß-Glucans sources available in prokaryotes and eukaryotes, their biosynthesis mechanism, extraction, and structural identification methods.


Cite this article:
Shradha Chaudhari, Shikha Gaikwad, Satish Polshettiwar, Shraddha Ram. A Comprehensive Review on the Sources, Biosynthesis, Extraction, and Characterization of β-Glucans. Research Journal of Pharmacy and Technology. 2025;18(1):143-1. doi: 10.52711/0974-360X.2025.00022

Cite(Electronic):
Shradha Chaudhari, Shikha Gaikwad, Satish Polshettiwar, Shraddha Ram. A Comprehensive Review on the Sources, Biosynthesis, Extraction, and Characterization of β-Glucans. Research Journal of Pharmacy and Technology. 2025;18(1):143-1. doi: 10.52711/0974-360X.2025.00022   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-22


REFERENCES:
1.    Mirończuk-Chodakowska I, Kujawowicz K, Witkowska AM. Beta-glucans from fungi: biological and health-promoting potential in the COVID-19 pandemic era. Nutrients. 2021; Nov 6; 13(11): 3960. https://doi.org/10.3390/nu13113960
2.    Du B, Meenu M, Liu H, Xu B. A concise review of the molecular structure and function relationship of β-glucan. International Journal of Molecular Sciences. 2019; Aug 18; 20(16): 4032.https://doi.org/10.3390/ijms20164032
3.    Stone BA. Chemistry of β-glucans. In Chemistry, Biochemistry, and Biology of 1-3 beta glucans and Related Polysaccharides 2009 Jan 1 (pp. 5-46). Academic press. https://doi.org/10.1016/B978-0-12-373971-1.00002-9
4.    Market Reports (2023). Beta-glucan market report. Retrieved from Market Reports (2023). Beta-glucan market report. https://www.marketsandmarkets.com/Market-Reports/beta-glucan-market-5191796. Accessed December 20, 2023.
5.    Naghmouchi K, Belguesmia Y, Bendali F, Spano G, Seal BS, Drider D. Lactobacillus fermentum: A bacterial species with potential for food preservation and biomedical applications. Critical reviews in Food Science and Nutrition. 2020; Nov 12; 60(20): 3387-99. https://doi.org/10.1080/10408398.2019.1688250 2020.
6.    Zhou Y, Luo Y, Yu B, Zheng P, Yu J, Huang Z, Mao X, Luo J, Yan H, He J. Agrobacterium sp. ZX09 β-Glucan Attenuates Enterotoxigenic Escherichia coli-Induced Disruption of Intestinal Epithelium in Weaned Pigs. International Journal of Molecular Sciences. 2022; Sep 7; 23(18): 10290. https://doi.org/10.3390/ijms231810290
7.    Arena MP, Spano G, Fiocco D. β-Glucans and Probiotics. American Journal of Immunology. 2017; 13(1): 34-44. https://doi.org/10.3844/ajisp.2017.34.44
8.    Utama GL, Dio C, Lembong E, Cahyana Y, Balia RL. Microorganism-based β-glucan production and their potential as antioxidants. Systematic Reviews in Pharmacy 2020; Oct 1; 11: 868-73. http://dx.doi.org/10.31838/srp.2020.10.130
9.    Schulze C, Wetzel M, Reinhardt J, Schmidt M, Felten L, Mundt S. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production. Journal of Applied Phycology. 2016; Oct; 28: 2719-25. https://doi.org/10.1007/s10811-016-0812-9
10.    Lante, A.; Canazza, E. Insight on Extraction and Preservation of Biological Activity of Cereal β-D-Glucans. Appl. Sci. 2023; 13: 11080. https://doi.org/10.3390/ app131911080
11.    Bockwoldt JA, Meng C, Ludwig C, Kupetz M, Ehrmann MA. Proteomic analysis reveals enzymes for β-D-glucan formation and degradation in Levilactobacillus brevis TMW 1.2112. International Journal of Molecular Sciences. 2022; Mar 21; 23(6): 3393.https://doi.org/10.3390/ijms23063393
12.    Zhou X, He J, Wang L, Wang Y, Du G, Kang Z. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. Journal of Microbiology and Biotechnology May 2019; 29(5):758-764https://doi.org/10.4014/jmb.1812.12049
13.    Bulmer GS, De Andrade P, Field RA, van Munster JM. Recent advances in enzymatic synthesis of β-glucan and cellulose. Carbohydrate Research. 2021; Oct 1; 508: 108411. https://doi.org/10.1016/j.carres.2021.108411
14.    Méndez-Líter JA, Nieto-Domínguez M, Fernandez de Toro B, González Santana A, Prieto A, Asensio JL, Cañada FJ, de Eugenio LI, Martínez MJ. A glucotolerant β-glucosidase from the fungus Talaromyces amestolkiae and its conversion into a glycosynthase for glycosylation of phenolic compounds. Microbial Cell Factories. 2020; Dec; 19:1-3. https://doi.org/10.1186/s12934-020-01386-1
15.    Kleczkowski LA, Decker D. Effects of magnesium, pyrophosphate, and phosphonates on the pyrophosphorolytic reaction of UDP-glucose pyrophosphorylase. Plants. 2022; Jun 20; 11(12): 1611. https://doi.org/10.3390/plants11121611
16.    Chhetri A, Loksztejn A, Nguyen H, Pianalto KM, Kim MJ, Hong J, Alspaugh JA, Yokoyama K. Length specificity and polymerization mechanism of (1, 3)-β-d-glucan synthases in fungal cell wall biosynthesis. Biochemistry. 2020; Jan 3; 59(5): 682-93. https://doi.org/10.1021/acs.biochem.9b00896.
17.    Ferrières V, Legentil L, Sylla B, Descroix K, Nugier-Chauvin C, Daniellou R. Chemical Synthesis of Oligo-(1 3)- -D-Glucans. Biology and Chemistry of Beta Glucan. 2013 May 24; 2:83.
18.    Dimopoulos G, Tsantes M, Taoukis P. Effect of high-pressure homogenization on the production of yeast extract via autolysis and beta-glucan recovery. Innovative Food Science and Emerging Technologies. 2020 Jun 1; 62:102340.https://doi.org/10.1016/j.ifset.2020.102340
19.    Maheshwari G, Sowrirajan S, Joseph B. Extraction and isolation of β‐glucan from grain sources—A review. Journal of Food Science. 2017; Jul; 82(7): 1535-45. https://doi.org/10.1111/1750-3841.13765.
20.    Varelas V, Liouni M, Calokerinos AC, Nerantzis ET. An evaluation study of different methods for the production of β‐D‐glucan from yeast biomass. Drug Testing and Analysis. 2016 Jan;8(1):46-55. https://doi.org/10.1002/dta.1833
21.    Pengkumsri N, Sivamaruthi BS, Sirilun S, Peerajan S, Kesika P, Chaiyasut K, Chaiyasut C. Extraction of β-glucan from Saccharomyces cerevisiae: Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Science and Technology. 2016 Jul 28; 37: 124-30. https://doi.org/10.1590/1678-457X.10716.
22.    Upadhye M, Gandhi P, Phanse M. Pharmacognostical, Phytochemical Studies and Comparative Extraction Techniques of Daucus carota. Research Journal of Pharmacognosy and Phytochemistry. 2014; 6(3): 115-7.
23.    Pawar AR, Vikhe DN, Jadhav RS. Recent Advances in Extraction Techniques of Herbals-A Review. https://doi.org/10.5958/2231-5659.2020.00050.8
24.    Bacha U, Nasir M, Iqbal S, Anjum AA. Nutraceutical, anti-inflammatory, and immune modulatory effects of β-glucan isolated from yeast. BioMed Research International. 2017; Aug 23; 2017.https://doi.org/10.1155/2017/8972678.
25.    Indriati Ramadhani DL, Yuliani Y, Amir M. Extraction, characterization, and biological toxicity of β-glucans from Saccharomyces cerevisiae isolated from ragi. Journal of Microbial Systematics and Biotechnology. 2020; 2(2): 35-43. http://dx.doi.org/10.37604/jmsb.v2i2.62.
26.    Jean A. Boutros; Andrew S. Magee; Donald Cox; (2022). Comparison of structural differences between yeast β-glucan sourced from different strains of Saccharomyces cerevisiae and processed using proprietary manufacturing processes. Food Chemistry. https://doi.org/10.1016/j.foodchem.2021.130708.
27.    Kanchana S, Arumugam M. Alternative exploration of hyaluronic acid from the marine superstore. Asian Journal of Pharmaceutical Research. 2014; 4(4): 169-73.
28.    Cho JH, Kim T, Yun HY, Kim HH. Facile depolymerization process of β-glucan through the use of a high-pressure homogenizer. American Journal of Research Communication. 2014; 2: 168-78.
29.    Lee K, Choi Y, Kim K, Koo HJ, Choi J. Quantification of unknown nanoscale biomolecules using the average-weight-difference method. Applied Sciences. 2019; Jan 2; 9(1): 130.https://doi.org/10.3390/app9010130.
30.    Yogeshwari C, Kumudha P. Spectroscopic Analysis of Bioactive Components of Ichnocarpus frutescens R. Br. Research Journal of Pharmacognosy and Phytochemistry. 2018; 10(2): 171-4. https://doi.org/10.5958/0975-4385.2018.00026.2
31.    Venkatachalam G, Arumugam S, Doble M. Synthesis, characterization, and biological activity of aminated zymosan. ACS omega. 2020 Jun 23; 5(26): 15973-82. https://doi.org/10.1021/acsomega.0c01243.
32.    Rong Y, Xu N, Xie B, Hao J, Yi L, Cheng R, Li D, Linhardt RJ, Zhang Z. Sequencing analysis of β-glucan from highland barley with high-performance anion exchange chromatography coupled to quadrupole time–Of–Flight mass spectrometry. Food hydrocolloids. 2017; Dec 1; 73: 235-42. http://dx.doi.org/10.1016/j.foodhyd.2017.07.006.
33.    Bikmurzin R, Bandzeviciute R, Maršalka A, Maneikis A, Kalėdienė L. FT-IR method limitations for β-glucan analysis. Molecules. 2022; Jul 20; 27(14): 4616. https://doi.org/10.3390/molecules27144616
34.    Sahoo MR, Varrier RR, Anithakumari R, Palanichamy G, Sundari BT, Guru B. Analytical Profiling of Saffron (Crocus sativus) using 1H-NMR and FTIR based Metabolomics approach and UV-Vis, HPTLC and TLC Chromatography Fingerprinting. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(3): 191-7. http://doi.org/10.52711/0975-4385.2023.00029
35.    Corradini C, Cavazza A, Bignardi C. High-performance anion-exchange chromatography coupled with pulsed electrochemical detection as a powerful tool to evaluate carbohydrates of food interest: principles and applications. International Journal of Carbohydrate Chemistry. 2012; 2012. https://doi.org/10.1155/2012/487564
36.    Ryu J, Donghyung Y, Byung-Hoo Lee, Suyong Lee. Linkage structure analysis of barley and oat β-glucans by high-performance anion exchange chromatography. Food Science and Biotechnology February 2009 18(1):271-274
37.    You J. Determination of β-glucan in health food by high-performance liquid chromatography. Journal of Food Safety and Quality. 2018; 9(1): 34-8.
38.    Al-Saffar AZ, Hadi NA, Khalaf HM. Antitumor activity of β-glucan extracted from Pleurotus eryngii. Indian Journal of Forensic Medicine and Toxicology. 2020; Jul 1; 14(3):2493.
39.    Allaith SA, Abdel-aziz ME, Thabit ZA, Altemimi AB, Abd El-Ghany K, Giuffrè AM, Al-Manhel AJ, Ebrahim HS, Mohamed RM, Abedelmaksoud TG. Screening and molecular identification of lactic acid bacteria producing β-glucan in boza and cider. Fermentation. 2022; Jul 25; 8(8): 350. https://doi.org/10.3390/fermentation8080350.
40.    Khan H. Analytical Method Development in Pharmaceutical Research: Steps involved in HPLC Method Development. Asian Journal of Pharmaceutical Research. 2017; 7(3): 2037. https://doi.org/10.5958/2231-5691.2017.00031.4
41.    Yuan H, He Y, Zhang H, Ma X. Ultrasound-assisted enzymatic hydrolysis of yeast β-glucan catalyzed by β-glucanase: Chemical and microstructural analysis. Ultrasonics Sonochemistry. 2022; May 1; 86: 106012. https://doi.org/10.1016/j.ultsonch.2022.106012.
42.    Chopade SS, Gaikwad E, Jadhav A, Patil N, Payghan S. Formulation and Evaluation of Fast Disintegrating Tenoxicam Tablets and The Comparison with Marketed Product. 49. https://doi.org/10.5958/2231-5659.2020.00046.6
43.    Li Q, Liu J, Zhai H, Zhang Z, Xie R, Xiao F, Zeng X, Zhang Y, Li Z, Pan Z. Extraction and characterization of waxy and normal barley β-glucans and their effects on waxy and normal barley starch pasting and degradation properties and mash filtration rate. Carbohydrate Polymers. 2023; Feb 15; 302: 120405. https://doi.org/10.1016/j.carbpol.2022.120405.
44.    Patel B, Rai A, Raut H, Khandhar A, Khunt N. Synthesis of zinc nanoparticle using peppermint leaves and evaluation of zinc nanoparticle by UV, SEM, and XRDS. Research Journal of Pharmacognosy and Phytochemistry. 2022; 14(4): 247-51. https://doi.org/10.52711/0975-4385.2022.00043
45.    Kukkar R, Kukkar MR, Shukla SH, Saluja AK. Preparation and Structural Characterization of Kajjali: An Ayurvedic formulation. Research Journal of Pharmacognosy and Phytochemistry. 2012; 4(1): 33-8.
46.    Gayatri LA, Amol S, Indrajeet S. Development and validation of a stability-indicating RP-HPLC method for the determination of sitagliptin phosphate and simvastatin in the presence of their degradation products in bulk and binary mixture. Asian Journal of Research in Pharmaceutical Science. 2016; 6(3): 191-7. https://doi.org/10.5958/2231-5659.2016.00026.6

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available