Author(s):
Aqsha, A.C, Mahardian R, Hariyadi, D.M
Email(s):
dewi-m-h@ff.unair.ac.id
DOI:
10.52711/0974-360X.2025.00016
Address:
Aqsha, A.C1, Mahardian R2,3,4, Hariyadi, D.M1,3,4,5*
1Departement of Pharmaceutical Sciences, Faculty of Pharmacy, Airlangga University, Campus C Mulyorejo, Surabaya 60115, Indonesia.
2Departement of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Campus C Mulyorejo, Surabaya 60115, Indonesia.
3Inter-University Center of Excellence (IUCoE) of Health Autonomy-Drug Discovery, Universitas Airlangga, Surabaya 60115, Indonesia.
4Centre of Excellent (PUIPT) Skin and Cosmetic Technology, Universitas Airlangga, Surabaya 60115, Indonesia
5Pharmaceutics and Delivery Systems for Drugs, Cosmetics and Nanomedicine (Pharm-DCN) Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 1,
Year - 2025
ABSTRACT:
Lung infections cause significant health risks which highly motivated researchers for finding effective drug delivery methods. Ciprofloxacin HCl, a broad-spectrum antibiotic, demonstrates potential for lung therapy, yet its efficacy via oral or intravenous routes remains suboptimal with possible side effects. Inhalation offers a direct route for drug delivery to lung infections. This study explores the effect of sodium alginate-kappa carrageenan polymers and CaCl2 crosslinker concentrations on physical characteristics and stability of Ciprofloxacin HCl Pulmospheres. Pulmospheres were fabricated using ionic gelation, aiming to enhance drug stability and controlled release profile. Various formulations were analyzed for physical properties, drug encapsulation, and physical stability. FTIR analysis confirmed interactions between drug, polymers, crosslinkers for Pulmospheres formation. Yield percentages showed polymer concentration influenced efficiency, affecting drug entrapment. Moisture content remained within acceptable limits (<4%) crucial for particle stability. Particle size and morphology analysis revealed a direct correlation between polymer concentration and particle size, affecting surface characteristics. Encapsulation efficiency and drug loading increased with higher polymer concentrations but exhibited saturation with increased crosslinker concentration. Swelling index suggested higher polymer concentrations facilitated increased swelling. Stability tests at varying temperatures demonstrated consistency in moisture content and drug loading over 28 days, affirming the formulations' stability. This study delineates the intricate relationship between polymer composition, crosslinker concentration, and resulting Pulmospheres characteristics. These findings provide insights into optimizing formulations for enhanced drug stability and controlled release in pulmonary drug delivery systems.
Cite this article:
Aqsha, A.C, Mahardian R, Hariyadi, D.M. The Influence of different Concentrations of Sodium Alginate-Kappa Carrageenan as Polymer Combination and CaCl2 as Crosslinker on The Physical Characteristics and Stability of Ciprofloxacin HCl Pulmospheres. Research Journal of Pharmacy and Technology. 2025;18(1):103-0. doi: 10.52711/0974-360X.2025.00016
Cite(Electronic):
Aqsha, A.C, Mahardian R, Hariyadi, D.M. The Influence of different Concentrations of Sodium Alginate-Kappa Carrageenan as Polymer Combination and CaCl2 as Crosslinker on The Physical Characteristics and Stability of Ciprofloxacin HCl Pulmospheres. Research Journal of Pharmacy and Technology. 2025;18(1):103-0. doi: 10.52711/0974-360X.2025.00016 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-1-16
REFERENCES:
1. Leissinger, M., Kulkarni, R., Zemans, R. L., Downey, G. P., and Jeyaseelan, S. Investigating the Role of Nucleotide-Binding Oligomerization Domain-Like Receptors in Bacterial Lung Infection. American Journal of Respiratory and critical care medicine. 2014; 189(12): 1461-1468. https://doi.org/10.1164/rccm.201311-2103PP
2. Sabuj, M. Z. R., and Islam, N. Inhaled Antibiotics-Loaded Polymeric Nanoparticles for the Management of Lower Respiratory Tract Infections. Nanoscale Advances. 2021
3. Tewes, F., Brillault, J., Lamy, B., O'connell, P., Olivier, J. C., Couet, W., and Healy, A. M. Ciprofloxacin-loaded inorganic-organic composite microparticles to treat bacterial lung infection. Molecular Pharmaceutics. 2016; 13(1): 100-112.https://doi.org/10.1021/acs.molpharmaceut.5b00543
4. Akdag Cayli, Y., Sahin, S., Buttini, F., Balducci, A. G., Montanari, S., Vural, I., and Oner, L. Dry powders for the inhalation ofciprofloxacin or levofloxacin combined with a mucolytic agent for cystic fibrosis patients. Drug Development and Industrial Pharmacy. 2017; 43(8): 1378-1389. https://doi.org/10.1080/03639045.2017.1318902
5. Blandón, L. M., Islan, G. A., Castro, G.R., Noseda, M. D., Thomaz-Soccol, V., and Soccol, C. R. Kefiran-alginate gel microspheres fororal delivery of ciprofloxacin. Colloids and Surfaces B: Biointerfaces. 2016; 145: 706-715. https://doi.org/10.1016/j.colsurfb.2016.05.078
6. Hariyadi, D. M. Effect of Polymer Concentration on Micromeritics, Kinetics, and Activity of Ciprofloxacin HCl-Alginate Microspheres. Asian Journal of Pharmaceutics (AJP): Free full text articles from Asian J Pharm. 2019; 13(04).
7. Alipour, M., and Suntres, Z. E. Liposomal antibiotic formulations for targeting the lungs in the treatment of Pseudomonas aeruginosa. Therapeutic delivery. 2014; 5(4): 409-427. https://doi.org/10.4155/tde.14.13
8. El-Sherbiny, I. M., El-Baz, N.M., and Yacoub, M.H. Inhalednano-and microparticles for drugdelivery. Global Cardiology Scienceand Practice. 2015; (1), 2. https://doi.org/10.5339/gcsp.2015.2
9. Jain,N.K.,Mishra,V., and Mehra,N.K.Targeted drug delivery to macrophages. Expert opinion on drug delivery. 2013; 10(3): 353 367. https://doi.org/10.1517/17425247.2013.751370
10. Lee, W. H., Loo, C. Y., Traini, D., and Young, P. M. Nano-and micro-based inhaled drug delivery systems for targeting alveolarmacrophages. Expert opinion on drug delivery. 2015; 12(6): 1009-1026. https://doi.org/10.1517/17425247.2015.1039509
11. Sahil, K., Akanksha, M., Premjeet, S.,Bilandi, A., and Kapoor, B. Microsphere: A review.Int.J.Res. Pharm.Chem. 2011; 1(4): 1184-98.
12. Hariyadi, Dewi Melani., Hendradi, Esti., Pratama Herlina Eka., Rahmadi, Mahardian. Microspheres as pulmonary delivery system - A review. Journal of Chinese Pharmaceutical Sciences, 2021; 30(7): 545-555SS. https://doi.org/10.5246/jcps.2021.07.043
13. Batista, P. S. P., de Morais, A. M. M. B., Pintado, M. M. E., and de Morais, R. M. S. C. Alginate: Pharmaceutical and MedicalApplications. In Extracellular Sugar-Based Biopolymers Matrices. 2019; 649-691. https://doi.org/10.1007/978-3-030-12919-4_16
14. Mohamadnia Z, Zohuriaan-Mehr MJ, Kabiri K, Jamshidi A, Mobedi H. Ionically cross-linked carrageenan-alginate hydrogel beads. JBiomaterSciPolymEd .2008; 19(1): 47-59. doi:10.1163/156856208783227640.PMID:18177553. https://doi.org/10.1163/156856208783227640
15. Mukhopadhyay, P., Chakraborty, S., Bhattacharya, S., Mishra, R., and Kundu, P. P. pH-sensitive chitosan/alginate core-shellnanoparticles for efficient and safe oral insulin delivery. International journal of biological macromolecules. 2015; 72: 640-648. https://doi.org/10.1016/j.ijbiomac.2014.08.040
16. Li, L., Zhao, J., Sun, Y., Yu, F., and Ma, J. Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chemical Engineering Journal. 2019; 372: 1091-1103. https://doi.org/10.1016/j.cej.2019.05.007
17. Maitra, J., and Shukla, V.K.Cross-linkinginHydrogels-Areview. American Journal of Polymer science. 2014; 4(2): 25-31
18. Abdelwahed, W., Degobert, G., Stainmesse, S., and Fessi, H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Advanced drug delivery reviews. 2006; 58(15): 1688-1713. https://doi.org/10.1016/j.addr.2006.09.017
19. Fonte, P., Reis, S., and Sarmento, B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. Journal of controlled release. 2016; 225: 75-86. https://doi.org/10.1016/j.jconrel.2016.01.034
20. Hariyadi, D., Purwanti, T., Kusumawati, I., Nirmala, R., and Maindra, H. Physical characterization and in vivo study of ovalbuminen capsulated in alginate microspheres. Physical Characterization and In Vivo Study of Ovalbumin Encapsulated in Alginate Microspheres. 2015; 5(2): 48-53. https://doi.org/10.25258/ijddt.v5i2.8868
21. Purwanti, T., Puspita, R., and Erawati, T. The influence ogalginate: gelatin combination matrix (2%: 1%) on the characteristics andantibacterial activity of Lactobacillus acidophillus probiotic microspheres. Indonesian Journal of Pharmacy and Pharmaceutical Sciences. 2019: 6(1): 44-50. https://doi.org/10.20473/jfiki.v6i12019.44-50
22. Durgapal, D., Mukhopadhyay, S and Goswami, L. Preparation, characterization and Evaluation of Floating Microparticles of Ciprofloxacin. International Journal of Applied Pharmaceutics. 2017; 9 (1): 1-8. https://doi.org/10.22159/ijap.2017v9i1.14183
23. Rui, N. Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery. European Journal of Pharmaceutical Sciences. 2016; 99: 137-146. https://doi.org/10.1016/j.ejps.2016.12.013
24. Joshi S, Patel P. Lin S, Mada PL. Development of Crosslinked Alginate spheres by ionotropic gelation technique for controlled release of Naproxen Oral. Asian J Pharm. 2012; 7(2); 134-142
25. Patel, B., Gupta, N., and Ahsan, F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to in fluence the therapeutic outcome. European Journal of Pharmaceutics and Biopharmaceutics. 2015; 89: 163-174. https://doi.org/10.1016/j.ejpb.2014.12.001
26. Manjanna, L.M., Kumar, T., Pramod, M., Shivakumar, B. Calcium alginate cross-linked polymeric microbeads for oral sustained drugdelivery in arthritis. Drug Discoveries and Therapeutics. 2010; 109-122
27. Ceschan NE, Rosas MD, Olivera ME, Dugour AV, Figueroa JM, Bucalá V, Ramírez-Rigo MV. Development of a carrier-free dry powder ofloxacin formulation with enhanced aerosolization properties. Journal of Pharmaceutical Sciences. 2020; Sep 1; 109(9): 2787-97. https://doi.org/10.1016/j.xphs.2020.05.027
28. Hardenia, S., etal. Formulation and evaluation of mucoadhesive microspheres of Ciprofloxacin. Journal of Advanced pharmacy Education and Research. 2011; 1(4): 214-224
29. Sianiparetal. Optimization of Span 80 Concentration and stiring time on the preparation of met for min hydrochloride-chitosan microspheres. E-Jurnal Pustaka Kesehatan. 2018; 1: 31-37. https://doi.org/10.19184/pk.v6i1.6614