Author(s):
Erlinda Widyastuti, Paulus B. Notopuro, Mia Ratwita, Annisa A. Rahman, Miyayu Soneta, Siti E. Rochmi
Email(s):
erlinda.widyastuti@vokasi.unair.ac.id
DOI:
10.52711/0974-360X.2024.00648
Address:
Erlinda Widyastuti1*, Paulus B. Notopuro2, Mia Ratwita2, Annisa A. Rahman3, Miyayu Soneta1, Siti E. Rochmi1
1Department of Health, Faculty of Vocational Studies, Airlangga University, Surabaya, Indonesia.
2Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
3Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
Blood transfusion is the primary therapeutic approach for patients diagnosed with beta thalassemia major. However, this treatment can lead to the accumulation of toxic iron in various organs such as the liver, heart, endocrine system, and bone marrow, causing tissue damage. Damage to the bone marrow results in the suppression of erythropoiesis. The serum ferritin level is an unreliable indicator of total body iron levels since it is a positive acute phase protein which limits its use for diagnosis. Moreover, examining serum ferritin levels can be costly and not widely available. In contrast to serum ferritin levels, Immature Reticulocyte Fraction (IRF) is an early indicator of erythropoiesis activity that reduces iron overload and does not react significantly during acute-phase responses. Additionally, IRF parameters are already present in hematology analyzers, however their optimization has been limited by lack of investigation into their utility for examination purposes. Therefore, this study aims to investigate the correlation between serum ferritin levels and IRF values among children diagnosed with beta thalassemia major. The study design was a cross-sectional approach. Subjects consisted of 55 cases of children with beta thalassemia major who came to the Hemato-Oncology Outpatient Clinic in the Pediatric Department of one of the hospitals in Surabaya, East Java, Indonesia. Levels of serum ferritin were measured using ECLIA (Electrochemiluminescence immunoassay) methods, while IRF was measured via flowcytometry. The results were statistically analyzed using Spearman correlation test. In children with beta thalassemia major, levels of serum ferritin ranged from 358ng/mL to 5696ng/mL, with an average value of 2542.760ng/mL and a standard deviation of 1279.850ng/mL being recorded. Immature Reticulocyte Fraction (IRF) varied from 1.600% to 34.300%, having an average value of 15.240% and a standard deviation amounting to 6.228%. Correlations were shown between serum ferritin levels and IRF with a correlation coefficient (r) of - 0.369 and a p-value of 0.006. There was a negative correlation between serum ferritin levels and IRF. It was found that the higher serum ferritin levels, the lower the IRF.
Cite this article:
Erlinda Widyastuti, Paulus B. Notopuro, Mia Ratwita, Annisa A. Rahman, Miyayu Soneta, Siti E. Rochmi. Correlation between Serum Ferritin level and Immature Reticulocyte Fraction (IRF) in Children with Beta Thalassemia Major. Research Journal of Pharmacy and Technology. 2024; 17(9):4194-8. doi: 10.52711/0974-360X.2024.00648
Cite(Electronic):
Erlinda Widyastuti, Paulus B. Notopuro, Mia Ratwita, Annisa A. Rahman, Miyayu Soneta, Siti E. Rochmi. Correlation between Serum Ferritin level and Immature Reticulocyte Fraction (IRF) in Children with Beta Thalassemia Major. Research Journal of Pharmacy and Technology. 2024; 17(9):4194-8. doi: 10.52711/0974-360X.2024.00648 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-9
REFERENCES:
1. Ribeil JA. Arlet JB. Dussiot M. Moura IC. Courtois G. Hermine O. Ineffective erythropoiesis in β-thalassemia. Scientific World Journal. 2013; 2013: 394295. doi: 10.1155/2013/394295.
2. Franceschi LD. Bertoldi M. Matte A. Franco SS. Pantaleo A. Ferru E. Turrini F. Oxidative stress and β-thalassemic erythroid cells behind the molecular defect. Oxid Med Cell Longev. 2013; 2013: 985210. doi: 10.1155/2013/985210.
3. Unissa R. Monica B. Konakanchi S. Darak R. Keerthana SL. Kumar SA. Thalassemia: A Review. Asian Journal of Pharmaceutical Research. 2018; 8(3): 195-202. doi: 10.5958/2231-5691.2018.00034.5.
4. Prathyusha K. Venkataswamy M. Goud KS. Ramanjaneyulu K. Himabindu J. Raj KS. Thalassemia – A Blood Disorder, its Cause, Prevention and Management. Research Journal of Pharmaceutical Dosage Forms and Technology. 2019; 11(3): 186-190. doi: 10.5958/0975-4377.2019.00033.8.
5. Shahwan M. Jairoun A. Hassan N. Al-Omer M. Alkhoujah S. Mohi H. Nidal B. Akrama F. Assessment of the Knowledge, Perception, and Practice regarding Thalassemia Prevention among Medical students in Ajman University. Research Journal of Pharmacy and Technology. 2020; 13(11): 5229-5234. doi: 10.5958/0974-360X.2020.00915.4.
6. Shrivastava A. Mohapatra SK. Roy A. Das SN. Tyagi G. The Quantitative Detection of Different Types of Hb Variants through HPLC Technique: Report of 428 cases in Indian Population. Research Journal of Pharmacology and Pharmacodynamics. 2010; 2(6): 397-400. doi: not available.
7. AL-Shimaysawee S. Determination of Some Types of Mutations in Iraqi Transfusion Dependent beta-thalassemia Patients. Research Journal of Pharmacy and Technology. 2018; 11(10): 4675-4678. doi: 10.5958/0974-360X.2018.00855.7.
8. Ginzburg Y. Rivella S. β-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood, The Journal of the American Society of Hematology. 2011; 118(16): 4321-4330. doi: 10.1182/blood-2011-03-283614.
9. Forni GL. Podestà M. Musso M. Piaggio G. Musallam KM. Balocco M. Pozzi S. Rosa A. Frassoni F. Differential effects of the type of iron chelator on the absolute number of hematopoietic peripheral progenitors in patients with β-thalassemia major. Haematologica. 2013; 98(4): 555-9. doi: 10.3324/haematol.2012.076240.
10. Poggiali E. Cassinerio E. Zanaboni L. Cappellini MD. An update on iron chelation therapy. Blood Transfusion. 2012; 10(4): 411-422. doi: 10.2450/2012.0008-12.
11. Cappellini MD. Cohen A. Eleftheriou A. Piga A. Porter J. Taher A. Guidelines for the clinical management of thalassaemia. 2nd Revised ed. Nicosia (CY): Thalassaemia International Federation; 2008.
12. Tsay J. Yang Z. Ross FP. Cunningham-Rundles S. Lin H. Coleman R. Mayer-Kuckuk P. Doty SB. Grady RW. Giardina PJ. Boskey AL. Vogiatzi MG. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood, The Journal of the American Society of Hematology. 2010; 116(14): 2582-2589. doi: 10.1182/blood-2009-12-260083.
13. Lee JW. Yoon SS. Shen ZX. Ganser A. Hsu HC. El-Ali A. Habr D. Martin N. Porter JB. Hematologic responses in patients with aplastic anemia treated with deferasirox: a post hoc analysis from the EPIC study. Haematologica. 2013; 98(7): 1045-8. doi: 10.3324/haematol.2012.077669.
14. Gundabolu K. Chen H. Li H. Shakaladevanapura L. Bhagat T. Vallumsetia N. Ginzburg Y. Verma A. Inhibition of erythropoiesis by iron overload is mediated through TGFβ signaling. Blood, American Journal of Hematology. 2013; 122(21): 2787. doi: 10.1182/blood.V122.21.2787.2787.
15. Hoffbrand AV. Cohen A. Hershko C. Role of deferiprone in chelation therapy for transfusional iron overload. Blood. 2003; 102(1): 17-24. doi: 10.1182/blood-2002-06-1867.
16. Choi JW. Pai SH. Reticulocyte subpopulations and reticulocyte maturity index (RMI) rise as body iron status falls. Am J Hematol. 2001; Jun; 67(2): 130-5. doi: 10.1002/ajh.1091.
17. Kaneko Y. Miyazaki S. Hirasawa Y. Gejyo F. Suzuki M. Transferrin saturation versus reticulocyte hemoglobin content for iron deficiency in Japanese hemodialysis patients. Kidney Int. 2003; 63(3): 1086-93. doi: 10.1046/j.1523-1755.2003.00826.x.
18. Nima RS. Ablaa HA. Mohammed HJ. The Relationship Between Blood Counts and Serum Levels of Zinc and Copper in Children with β-thalassemia Living in Najaf Governorate, in Iraq. Research Journal of Pharmacy and Technology. 2018; 11(10): 4640-4644. doi: 10.5958/0974-360X.2018.00848.X.
19. AMS. KKA. Salih SM. The Relationship Between Serum Level of Ferritin and Cardiac Troponin T (cTnT) in Children with Major Beta-Thalassemia. Research Journal of Pharmacy and Technology. 2019; 12(4): 1713-1716. doi: 10.5958/0974-360X.2019.00285.3.
20. Raoof IB. Daoud AG. Diagnostic Efficiency of Alpha Feto Protein, Hypothyroidism in Thalassemic Patients with Liver Damage. Research Journal of Pharmacy and Technology. 2019; 12(12): 5841-5844. doi: 10.5958/0974-360X.2019.01012.6.
21. Shakkour R. Hammoud T. Mukhalalaty Y. Quobaili FA. Investigation of Gonadal Function, Puberty, and their Relationship to Serum Ferritin in Male Patients with β-Thalassemia Major in Syria. Research Journal of Pharmacy and Technology. 2021; 14(7): 3595-2. doi: 10.52711/0974-360X.2021.00622.
22. Wiryani C. Suwitra K. Pengaruh vitamin C terhadap kadar serum feritin pada pasien gagal ginjal kronik dengan hemodialisis reguler. Jurnal Penyakit Dalam. 2010; 11(2): 69-76. doi: not available.
23. Depalma RG. Hayes VW. Chow BK. Shamayeva G. May PE. Zacharski LR. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial. J Vasc Surg. 2010; 51(6): 1498-1503. doi: 10.1016/j.jvs.2009.12.068.
24. Files B. Brambilla D. Kutlar A. Miller S. Vichinsky E. Wang W. Granger S. Adams RJ. Longitudinal changes in ferritin during chronic transfusion: a report from the Stroke Prevention Trial in Sickle Cell Anemia (STOP). J Pediatr Hematol Oncol. 2002; 24(4): 284-290. doi: 10.1097/00043426-200205000-00013.
25. Wijaya AB. Marhaeni W. Triawanti. Devi WR. Saputra M. Rahman G. Oxidative Stress and Renal Function in Pediatric Patients with Beta Thalassemia Major (β-TM) Receiving Deferiprone and Deferasirox: A Cross-Sectional, Single Center Study. Research Journal of Pharmacy and Technology. 2023; 16(3): 1225-1230. doi: 10.52711/0974-360X.2023.00203.
26. Choi JW. Pai SH. Reticulocyte subpopulations and reticulocyte maturity index (RMI) rise as body iron status falls. Am J Hematol. 2001; 67(2): 130-135. doi: 10.1002/ajh.1091.
27. Kontoghiorghes GJ. Pattichi K. Hadjigavriel M. Kolnagou A. Transfusional iron overload and chelation therapy with deferoxamine and deferiprone (L1). Transfus Sci. 2000; 23(3): 211-223. doi: 10.1016/s0955-3886(00)00089-8.
28. Cid J. Palomera L. Díaz M. Zamora C. Solano F. Clinical characteristics and management of iron overload in 631 patients with chronic transfusion dependency: results from a multicentre, observational study. Blood Transfusion. 2014; 12(Suppl 1): s119-s123. doi: 10.2450/2013.0173-12.
29. Iron Overload (IO) | Iron Disorders Institute. Accessed on October 27, 2022. Available on: http://irondisorders.org/iron-overload/
30. Yesmin S. Sultana T. Roy CK. Rahman MQ. Ahmed AN. Immature reticulocyte fraction as a predictor of bone marrow recovery in children with acute lymphoblastic leukaemia on remission induction phase. Bangladesh Med Res Counc Bull. 2011; 37(2): 57-60. doi: 10.3329/bmrcb.v37i2.8435.