Author(s): Dmytro Maltsev

Email(s): maltsevdmitry23@ukr.net

DOI: 10.52711/0974-360X.2024.00646   

Address: Dmytro Maltsev
Research Institute of Experimental and Clinical Medicine, OBogomolets National Medical University, Kyiv, Ukraine.
*Corresponding Author

Published In:   Volume - 17,      Issue - 9,     Year - 2024


ABSTRACT:
Immune dysfunction causes the reactivation of herpesviruses in children with autism spectrum disorder (ASD) associated with the genetic folate cycle deficiency (GFCDs). The aim – to investigate the efficacy of valaciclovir, valganciclovir, and artesunate in reactivated Epstein-Barr virus (EBV), herpes virus type 6 (HHV-6) and herpes virus type 7 (HHV-7) infections in children with ASD. The treatment group consisted of 225 children aged 2 to 9 years who had GFCDs and ASD. The diagnosis of EBV, HHV-6, and HHV-7 reactivations was made by blood leukocyte PCR. Valacyclovir (500-1000 mg twice per day), valganciclovir (225-450mg twice per day), and artesunate (25-50mg twice a day) were prescribed for 3 months. The control group (no antiviral treatment) included 52 children who were comparable in age and diagnosis. Valacyclovir treatment achieved undetectable EBV DNA in 39% of cases. Valganciclovir and artesunate performed complete response rates of 47 and 62%, respectively (?<0.05; Z


Cite this article:
Dmytro Maltsev. Treating reactivated EBV, HHV-6, HHV-7 infections in children with Autism Spectrum disorder associated with genetic folate cycle disruptions: Outcomes after Valacyclovir, Valganciclovir and Artesunate. Research Journal of Pharmacy and Technology. 2024; 17(9):4177-6. doi: 10.52711/0974-360X.2024.00646

Cite(Electronic):
Dmytro Maltsev. Treating reactivated EBV, HHV-6, HHV-7 infections in children with Autism Spectrum disorder associated with genetic folate cycle disruptions: Outcomes after Valacyclovir, Valganciclovir and Artesunate. Research Journal of Pharmacy and Technology. 2024; 17(9):4177-6. doi: 10.52711/0974-360X.2024.00646   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-7


REFERENCES:
1.    Indika NR, Frye RE, Rossignol DA, et al. The rationale for vitamin, mineral, and cofactor treatment in the precision medical care of autism spectrum disorder. J Pers Med. 2023; 13(2): 252. doi: 10.3390/jpm13020252.
2.    Pu D, Shen Y, Wu J. Association between MTHFR gene polymorphisms and the risk of autism spectrum disorders: a meta-analysis. Autism Res. 2013; 6: 384-92. doi: 10.1002/aur.1300.
3.    Shaik Mohammad N, Sai Shruti P, Bharathi V, et al. Clinical utility of folate pathway genetic polymorphisms in the diagnosis of autism spectrum disorders. Psychiatr Genet. 2016; 26: 281-6.
4.    Rai V. Association of methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism with autism: evidence of genetic susceptibility. Metab Brain Dis. 2016; 31: 727-35. doi: 10.1007/s11011-016-9815-0.
5.    Sadeghiyeh T, Dastgheib SA, Mirzaee-Khoramabadi K, et al. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: A systematic review and meta-analysis. Asian J Psychiatr. 2019; 46: 54-61. doi: 10.1016/j.ajp.2019.09.016.
6.    Li Y, Qiu S, Shi J, et al. Association between MTHFR C677T/A1298C and susceptibility to autism spectrum disorders: a meta-analysis. BMC Pediatr. 2020; 20: 449. Sun L, Wang X, Wang X, et al. Genome-wide DNA methylation profiles of autism spectrum disorder. Psychiatr Genet. 2022; 32: 131-45. doi: 10.1097/YPG.0000000000000314.
7.    Liu X, Lin J, Zhang H, et al. Oxidative stress in autism spectrum disorder-current progress of mechanisms and biomarkers. Front Psychiatry. 2022; 13: 813304. doi: 10.3389/fpsyt.2022.813304.
8.    Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune dysfunction and autoimmunity as pathological mechanisms in autism spectrum disorders. Front Cell Neurosci. 2018; 12: 405. doi: 10.3389/fncel.2018.00405.
9.    Ghaziuddin M, Tsai LY, Eilers L, Ghaziuddin N. Brief report: autism and herpes simplex encephalitis. J Autism Dev Disord. 1992; 22: 107-13. doi: 10.1007/BF01046406.
10.    Valayi S, Eftekharian MM, Taheri M, Alikhani MY. Evaluation of antibodies to cytomegalovirus and Epstein-Barr virus in patients with autism spectrum disorder. Hum Antibodies. 2017; 26: 165-9. doi: 10.3233/HAB-180335.
11.    Sakamoto A, Moriuchi H, Matsuzaki J, Motoyama K, Moriuchi M. Retrospective diagnosis of congenital cytomegalovirus infection in children with autism spectrum disorder but no other major neurologic deficit. Brain Dev. 2015; 37: 200-5. doi: 10.1016/j.braindev.2014.03.016.
12.    Nicolson GL, Gan R, Nicolson NL, Haier J. Evidence for Mycoplasma ssp., Chlamydia pneunomiae, and human herpes virus-6 coinfections in the blood of patients with autistic spectrum disorders. J Neurosci Res. 2007; 85: 1143-8. doi: 10.1002/jnr.21203.
13.    Wipfler P, Dunn N, Beiki O, Trinka E, Fogdell-Hahn A. The viral hypothesis of mesial temporal lobe epilepsy - is human herpes virus-6 the missing link? A systematic review and meta-analysis. Seizure. 2018; 54: 33-40. doi: 10.1016/j.seizure.2017.11.015.
14.    Engdahl E, Dunn N, Niehusmann P, et al. Human herpesvirus 6B induces hypomethylation on chromosome 17p13.3, correlating with increased gene expression and virus integration. J Virol. 2017; 91(11): e02105-16. doi: 10.1128/JVI.02105-16.
15.    Lecointe D, Fabre M, Habes D, Mielot F, Bernard O, Nordmann P. Syndrome d'activation macrophagique au cours de la primo-infection pat le 6e virus herpétique humain: une affection certainement méconnue au cours de la transplantation hépatique chez l'enfant [Macrophage activation syndrome in primary human herpes virus-6 infection: a rare condition after liver transplantation in infants]. Gastroenterol Clin Biol. 2000; 24: 1227-8.
16.    Hama N, Abe R, Gibson A, Phillips EJ. Drug-induced hypersensitivity syndrome (DIHS)/Drug reaction with eosinophilia and systemic symptoms (DRESS): clinical features and pathogenesis. J Allergy Clin Immunol Pract. 2022; 10: 1155-67.e5. doi: 10.1016/j.jaip.2022.02.004.
17.    Venâncio P, Brito MJ, Pereira G, Vieira JP. Anti-N-methyl-D-aspartate receptor encephalitis with positive serum antithyroid antibodies, IgM antibodies against mycoplasma pneumoniae and human herpesvirus 7 PCR in the CSF. Pediatr Infect Dis. J 2014; 33: 882-3. doi: 10.1097/INF.0000000000000408.
18.    Maltsev D. A comparative study of valaciclovir, valganciclovir, and artesunate efficacy in reactivated HHV-6 and HHV-7 infections associated with chronic fatigue syndrome/myalgic encephalomyelitis. Microbiol Immunol. 2022; 66: 193-9. doi: 10.1111/1348-0421.12966.
19.    Urbakh VYu. Statistical Analysis in Biological and Medical Research. Moscow: Medicine. 1975.
20.    Zheng Z, Zheng P, Zou X. Peripheral blood S100B levels in autism spectrum disorder: a systematic review and meta-analysis. J Autism Dev Disord. 2021; 51: 2569-77. doi: 10.1007/s10803-020-04710-1.
21.    Mohammed ZB, Abdullah SF. Molecular Detection and Genotyping of Human Herpes Virus 8 in a sample of Iraqi Blood Donors. RJPT. 2021: 4047–52. doi: 10.52711/0974-360X.2021.00701.
22.    Nikitha KSV, Sushmitha C, Monika M, Satyanarayana V. Progressive multifocal leukoencephalopathy: A review. Int J Contemp Microbiol. 2016; 9: 2349. doi: 10.5958/0974-360X.2016.00469.8.
23.    Parkar S, Kegade P, Gade A, Sawant R. A Review on - Herpes Zoster. Asian J Res Pharm Sci. 2020; 10: 282–6. doi: 10.5958/2231-5659.2020.00049.1.
24.    Hussein TA, Saihood AS, Rayshan AR. Molecular Identification and Characterization in blood samples of patients with progressive multifocal leukoencephalopathy and human kidney cell line culture of John Cunningham Virus (JCV) in Iraq. Res J Pharm Technol. 2018; 11: 3392. doi: 10.5958/0974-360X.2018.00625.X.
25.    Yugander P, Jagannath M. Structural Neuroimaging Findings in Autism Spectrum Disorder: A Systematic Review. RJPT. 2021: 2341–7. doi: 10.52711/0974-360X.2021.00413.
26.    Sahu P, Pinkalwar N, Dhar Dubey R, Paroha S, Chatterjee S, Chatterjee T. Biomarkers: An Emerging Tool for Diagnosis of a Disease and Drug Development. Asian J Res Pharm Sci. 2011; 1(1): 9-16.
27.    Lv MN, Zhang H, Shu Y, Chen S, Hu YY, Zhou M. The neonatal levels of TSB, NSE and CK-BB in autism spectrum disorder from Southern China. Transl Neurosci. 2016; 7: 6-11. doi: 10.1515/tnsci-2016-0002.
28.    Binstock T. Intra-monocyte pathogens delineate autism subgroups. Med Hypotheses. 2001; 56: 523-31. doi: 10.1054/mehy.2000.1247.
29.    Marseglia LM, Nicotera A, Salpietro V, et al. Hyperhomocysteinemia and MTHFR polymorphisms as antenatal risk factors of white matter abnormalities in two cohorts of late preterm and full term newborns. Oxid Med Cell Longev. 2015; 2015: 543134. doi: 10.1155/2015/543134.
30.    Sweeten TL, Croen LA, Windham GC, Odell JD, Stubbs EG, Torres AR. Brief report: low rates of herpesvirus detection in blood of individuals with autism spectrum disorder and controls. J Autism Dev Disord. 2019; 49: 410-4. doi: 10.1007/s10803-018-3691-x.
31.    Ommi A. A case report on viral meningoencephalitis. Asian J Res Pharm Sci. 2020; 10: 138. doi: 10.5958/2231-5659.2020.00025.9.
32.    Gillberg IC. Autistic syndrome with onset at age 31 years: herpes encephalitis as a possible model for childhood autism. Dev Med Child Neurol. 1991; 33: 920-4. doi: 10.1111/j.1469-8749.1991.tb14804.x.
33.    Harberts E, Yao K, Wohler JE, et al. Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci USA. 2011; 108: 13734-9. doi: 10.1073/pnas.1105143108.
34.    Monge-Galindo L, Pérez-Delgado R, López-Pisón J, Lafuente-Hidalgo M, del Olmo-Izuzquiza IR, Peña-Segura JL. Esclerosis mesial temporal en pediatría: espectro clinico. Nuestra experiencia de 19 años [Mesial temporal sclerosis in paediatrics: its clinical spectrum. Our experience gained over a 19-year period]. Rev Neurol. 2010; 50: 341-8.
35.    Singh VK, Lin SX, Yang VC. Serological association of measles virus and human herpesvirus-6 with brain autoantibodies in autism. Clin Immunol Immunopathol. 1998; 89: 105-8. doi: 10.1006/clin.1998.4588.
36.    González-Toro MC, Jadraque-Rodríguez R, Sempere-Pérez Á, Martínez-Pastor P, Jover-Cerdá J, Gómez-Gosálvez F. Encefalitis antirreceptor de NMDA: dos casos pediátricos Anti-NMDA receptor encephalitis: two paediatric cases. Rev Neurol. 2013; 57: 504-8.
37.    Kiani R, Lawden M, Eames P, et al. Anti-NMDA-receptor encephalitis presenting with catatonia and neuroleptic malignant syndrome in patients with intellectual disability and autism. BJPsych Bull. 2015; 39: 32-5. doi: 10.1192/pb.bp.112.041954.
38.    Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2015; 20: 440-6. doi: 10.1038/mp.2014.59.
39.    Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakeh A, Rezaei N. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: effects of age, gender, and latitude. J Psychiatr Res. 2019; 115: 90-102. doi: 10.1016/j.jpsychires.2019.05.019.
40.    Saurman V, Margolis KG, Luna RA. Autism spectrum disorder as a brain-gut-microbiome axis disorder. Dig Dis Sci. 2020; 65: 818-28. doi: 10.1007/s10620-020-06133-5.
41.    Amorim R, Catarino S, Miragaia P, Ferreras C, Viana V, Guardiano M. The impact of COVID-19 on children with autism spectrum disorder. Rev Neurol. 2020; 71(8): 285-91.
42.    Sgritta M, Dooling SW, Buffington SA, et al. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. Neuron. 2019; 101(2): 246-59.e6.
43.    Shuid AN, Jayusman PA, Shuid N, Ismail J, Kamal Nor N, Mohamed IN. Association between Viral Infections and Risk of Autistic Disorder: An Overview. Int J Environ Res Public Health. 2021; 18(6): 2817.
44.    Saraswati P, Rashmi P, Sunith PS, Vidya M. A Review-A Sperger Syndrome. Asia J Nurs Educ Res. 2018; 8: 541. doi: 10.5958/2349-2996.2018.00113.1.
45.    Al-Beltagi M, Saeed NK, Elbeltagi R, Bediwy AS, Aftab SAS, Alhawamdeh R. Viruses and autism: A Bi-mutual cause and effect. World J Virol. 2023; 12(3): 172-92.
46.    Abib RT, Gaman A, Dargél AA, et al. Intracellular Pathogen Infections and Immune Response in Autism. Neuroimmunomodulation. 2018; 25(5-6): 271-9.
47.    Kuber B R, Soundarya J. Method Development and Validation for the estimation of Class-2 Residual Solvents in Valacyclovir by HS-GC. RJPT. 2022: 5388–92. doi: 10.52711/0974-360X.2022.00908.
48.    Banerjee J, Chanda R, Samanta S, Karati D. Control of COVID-19 using Artesunate, an Antimalarial First Line Drug: A Review. AJPT. 2023: 130–4. doi: 10.52711/2231-5713.2023.00024.
49.    Torrente F, Ashwood P, Day R, et al. Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry. 2002; 7: 375-82. doi: 10.1038/sj.mp.4001077.
50.    Secchiero P, Mirandola P, Zella D, et al. Human herpesvirus 7 induces the functional up-regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) coupled to TRAIL-R1 down-modulation in CD4(+) T cells. Blood. 2001; 98: 2474-81. doi: 10.1182/blood.v98.8.2474.
51.    Hughes HK, Moreno RJ, Ashwood P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav Immun. 2023; 108: 245-54. doi: 10.1016/j.bbi.2022.12.001.
52.    Lampiasi N, Bonaventura R, Deidda I, Zito F, Russo R. Inflammation and the potential implication of macrophage-microglia polarization in human ASD: an overview. Int J Mol Sci. 2023; 24: 2703. doi: 10.3390/ijms2403270.
53.    Chu ECP, Spaska A, Monov D, Kasatkin M, Stroiteleva N. Examining the correlation between salivary cytokine concentrations and CRP in people experiencing social-cognitive stress. Neurol Res. 2023; 45(2): 160–5. https://doi.org/10.1080/01616412.2022.2126681
54.    Zhilyakova ET, Novikov OO, Khmyrov AV, Fadeeva DA, Gulyaeva VE, Malyutina AYu, et al. Properties and prospects of application of the whey protein lactoferrin in medicine and veterinary medicine (review). Drug Dev Reg. 2022; 11(1): 32-9. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-1-32-39
55.    Kodonidi IP, Anenko DS, Pozdnyakov DI. Synthesis and action of N-acylphenylacetamides and N-acyl-β-ketoamides on the central nervous system. Drug Dev Reg. 2022; 11(1): 40-9. (In Russ.) https://doi.org/10.33380/2305-2066-2022-11-1-40-49
56.    Pashanova OV, Ermakov DA, Philippova AV, Tikhonova YA, Pronkin NN. Analysis methods for medications improving cerebral circulation. Res J Pharm Techn. 2021; 14(1): 115-21.
57.    Krylova IA, Matʼkova IN. A patient with heartburn practicing self-treatment, on an outpatient visit. IP Pavlov Russian Medical Biological Herald. 2020; 28(4): 514-24.
58.    Belenkov YN, Snezhitskiy VA, Ardashev AV, et al. Recommendations of the Eurasian Arrhythmology Association (EURA) for the diagnosis and treatment of patients with arrhythmias and conduction disorders during the COVID-19 pandemic. Kardiologiia. 2020; 60(5): 4-8.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available