Author(s):
Shreyash D. Kadam, Denni Mammen, Laxmikant B. Nikam, Rahul R. Bagul, Ajit Borhade
Email(s):
drdenni.mammen@gmail.com
DOI:
10.52711/0974-360X.2024.00704
Address:
Shreyash D. Kadam1, Denni Mammen1*, Laxmikant B. Nikam2, Rahul R. Bagul2, Ajit Borhade2
1School of Science, Navrachana University, Vasana-Bhayli Road, Bhayli, Vadodara, Gujarat, India, 391410.
2 Gujarat Fluorochemicals Limited, Ranjitnagar, Panchamahal, Gujarat-389380, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
A number of new compounds have been synthesized by the authors containing fluorinated thiazolidin-4-one ring. With the aim to assess the anti-cancer potential of all the synthesized derivatives,theywere computationally tested against 1T46 C-Kit Tyrosine Kinase protein. Almost all of the evaluated derivatives showed decent affinity towards the protein, with favourable binding poses through hydrogen bonding, halogen binding and pi-sigma bonding. The amino acid lysine at position 623 in the protein chain exhibited hydrogen bond formation with each compound, along with other amino acids. Furthermore, the in silico ADME predictions suggest that the majority of the synthesized compounds exhibit favourable drug-like characteristics, with low potential for adverse effects and toxicity. The molecules possessing oxygen-containing functionalities such as –NO2, -OCF3, -OCF2CF2H and –OH have been shown to be able to cross the Human Intestinal lining. The fluorine-containing moieties such as difluoro, trifluoro, -CF3, chloro-fluoro, and difluorobenzylamino were predicted in order to cross BBB (Blood-Brain-Barrier). Current study has revealed that the synthesized compounds show promising anticancer potential.
Cite this article:
Shreyash D. Kadam, Denni Mammen, Laxmikant B. Nikam, Rahul R. Bagul, Ajit Borhade. Evaluation of 3-Ethyl-5-fluoro-2-phenylimino-thiazolidin-4-one derivatives: Molecular docking against kinase protein and ADME studies. Research Journal of Pharmacy and Technology. 2024; 17(9):4559-8. doi: 10.52711/0974-360X.2024.00704
Cite(Electronic):
Shreyash D. Kadam, Denni Mammen, Laxmikant B. Nikam, Rahul R. Bagul, Ajit Borhade. Evaluation of 3-Ethyl-5-fluoro-2-phenylimino-thiazolidin-4-one derivatives: Molecular docking against kinase protein and ADME studies. Research Journal of Pharmacy and Technology. 2024; 17(9):4559-8. doi: 10.52711/0974-360X.2024.00704 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-65
REFERENCES:
1. Daina, A.; Michielin, O.; Zoete, V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014; 54(12): 3284–3301. https://doi.org/https://doi.org/10.1021/ci500467k.
2. Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016; 11(11): 1117–1121. https://doi.org/10.1002/cmdc.201600182.
3. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017; 7 (42717): 1–13. https://doi.org/10.1038/srep42717.
4. Lengauer, T.; Rarey, M. Computational Methods for Biomolecular Docking. Curr. Opin. Struct. Biol. 1996; 6(3): 402–406. https://doi.org/10.1016/S0959-440X(96)80061-3.
5. Malik, A.; Malik, N.; Dhiman, P.; Khatkar, A.; Kakkar, S. Molecular Docking, Synthesis, α-Amylase Inhibition, Urease Inhibition and Antioxidant Evaluation of 4-Hydroxy-3-Methoxy Benzoic Acid Derivatives. Res. J. Pharm. Technol. 2019; 12(12): 5653–5663. https://doi.org/10.5958/0974-360X.2019.00978.8.
6. Girija, K.; Jamuna, B. Design and Synthesis of Some Novel Schiff’s Base Aryl Imidazole Derivatives, Characterization, Docking and Study of Their Anti-Microbial Activity. Res. J. Pharm. Technol. 2015; 8(4): 407–415. https://doi.org/10.5958/0974-360X.2015.00069.4.
7. Subramnian, G.; Rajagopal, K.; Sherin, F. Molecular Docking Studies, in Silico ADMET Screening of Some Novel Thiazolidine Substituted Oxadiazoles as Sirtuin 3 Activators Targeting Parkinson’s Disease. Res. J. Pharm. Technol. 2020; 13(6): 2708–2714. https://doi.org/10.5958/0974-360X.2020.00482.5.
8. Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr Comput Aided Drug Des. 2011; 7(2): 146–157.
9. R. D. Taylor, P.J. Jewsbury, J. W. E. A Review of Protein-Small Molecule Docking Methods. J. Comput. Aided. Mol. Des. 2002; 16: 151–166.
10. Yunta, M. J. R. Docking and Ligand Binding Affinity: Uses and Pitfalls. Am. J. Model. Optim. 2016; 4(3): 74–114. https://doi.org/10.12691/ajmo-4-3-2.
11. Pantsar, T.; Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules. 2018; 23(8). https://doi.org/10.3390/molecules23081899.
12. Butina, D.; Segall, M. D.; Frankcombe, K. Predicting ADME Properties in Silico: Methods and Models. Drug Discov. Today. 2002; 7(11): 83–88. https://doi.org/10.1016/S1359-6446(02)02288-2.
13. Szakács, G.; Váradi, A.; Özvegy-Laczka, C.; Sarkadi, B. The Role of ABC Transporters in Drug Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox). Drug Discov. Today. 2008; 13(9): 379–393. https://doi.org/10.1016/j.drudis.2007.12.010.
14. Yu, H.; Adedoyin, A. ADME-Tox in Drug Discovery: Integration of Experimental and Computational Technologies. Drug Discov. Today. 2003; 8 (18): 852–861. https://doi.org/10.1016/S1359-6446(03)02828-9.
15. Selick, H. E.; Beresford, A. P.; Tarbit, M. H. The Emerging Importance of Predictive ADME Simulation in Drug Discovery. Drug Discov. Today. 2002; 7(2): 109–116. https://doi.org/10.1016/S1359-6446(01)02100-6.
16. Di, L. Strategic Approaches to Optimizing Peptide ADME Properties. AAPS J. 2015; 17(1): 134–143. https://doi.org/10.1208/s12248-014-9687-3.
17. Ekins, S.; Waller, C. L.; Swaan, P. W.; Cruciani, G.; Wrighton, S. A.; Wikel, J. H. Progress in Predicting Human ADME Parameters in Silico. J. Pharmacol. Toxicol. Methods. 2000; 44(1): 251–272. https://doi.org/10.1016/S1056-8719(00)00109-X.
18. Oubella, A.; El Mansouri, A. E.; Fawzi, M.; Bimoussa, A.; Laamari, Y.; Auhmani, A.; Morjani, H.; Robert, A.; Riahi, A.; Youssef Ait Itto, M. Thiazolidinone-Linked1,2,3-Triazoles with Monoterpenic Skeleton as New Potential Anticancer Agents: Design, Synthesis and Molecular Docking Studies. Bioorg. Chem. 2021; 115: 105184. https://doi.org/10.1016/j.bioorg.2021.105184.
19. Ansari, M. F.; Siddiqui, S. M.; Ahmad, K.; Avecilla, F.; Dharavath, S.; Gourinath, S.; Azam, A. Synthesis, Antiamoebic and Molecular Docking Studies of Furan-Thiazolidinone Hybrids. Eur. J. Med. Chem. 2016; 124: 393–406. https://doi.org/10.1016/j.ejmech.2016.08.053.
20. Rahim, F.; Taha, M.; Ullah, H.; Wadood, A.; Selvaraj, M.; Rab, A.; Sajid, M.; Shah, S. A. A.; Uddin, N.; Gollapalli, M. Synthesis of New Arylhydrazide Bearing Schiff Bases/Thiazolidinone: α-Amylase, Urease Activities and Their Molecular Docking Studies. Bioorg. Chem. 2019; 91: 103112. https://doi.org/10.1016/j.bioorg.2019.103112.
21. Genc Bilgicli, H.; Taslimi, P.; Akyuz, B.; Tuzun, B.; Gulcin, İ. Synthesis, Characterization, Biological Evaluation, and Molecular Docking Studies of Some Piperonyl-Based 4-Thiazolidinone Derivatives. Arch. Pharm. (Weinheim). 2020; 353(1): 1–9. https://doi.org/10.1002/ardp.201900304.
22. Ahmed, S. A.; Odde, S.; Daga, P. R.; Bowling, J. J.; Mesbah, M. K.; Youssef, D. T.; Khalifa, S. I.; Doerksen, R. J.; Hamann, M. T. Latrunculin with a Highly Oxidized Thiazolidinone Ring: Structure Assignment and Actin Docking. Org. Lett. 2007; 9(23): 4773–4776. https://doi.org/10.1021/ol7020675.
23. Adnan, A. M. A.; Mahdi, M. F.; Khan, A. K. New 2-Methyl Benzimidazole Derivatives Bearing 4-Thiazolidinone Heterocyclic Rings: Synthesis, Preliminary Pharmacological Assessment and Docking Studies. Res. J. Pharm. Technol. 2021; 14(3): 1515–1520. https://doi.org/10.5958/0974-360X.2021.00269.9.
24. Kotte, D.; Gullapelli, K.; Gavaji, B.; Merugu, R.; Maroju, R.; Patwari, M. An Efficient Synthesis, Anti Inflammatory Activity and Molecular Docking Studies of New Triazinanes and Iminothiazolidinones. Res. J. Pharm. Technol. 2020; 13(10): 4743. https://doi.org/10.5958/0974-360x.2020.00836.7.
25. Puttaraj, C.; Bhalgat, C. M.; Chitale, S. K.; Ramesh, B. Synthesis and Biological Activities of Some Novel Heterocyclic Compounds Containing Thiazolidinone Derivatives. Res. J. Pharm. Technol. 2011; 4(6): 972–975.
26. Govindarao, K.; Srinivasan, N.; Suresh, R. Synthesis, Characterization and Antimicrobial Evaluation of Novel Schiff Bases of Aryl Amines Based 2-Azetidinones and 4-Thiazolidinones. Res. J. Pharm. Technol. 2020; 13(1): 168. https://doi.org/10.5958/0974-360x.2020.00034.7.
27. Mulay, A.; Ghodke, M.; Nikalje, A. P. G. Exploring Potential of 4-Thiazolidinone. Int. J. Pharm. Pharm. Sci. 2009; 1(1). https://doi.org/10.1002/chin.201035248.
28. Kadam, S. D.; Mammen, D.; Kadam, D. S.; Patil, S. G.; Bagul, R. R.; Doshi, A.; Patel, F. Synthesis of Novel Fluorinated 5-Benzylidine-3-Ethyl-2-(2,3,4-Trifluorophenylimino)Thiazolidin-4-One Derivatives Using Knoevenagel Reaction and Evaluation of Their in Vitro Antimicrobial Potentials. Asian J. Chem. 2023; 35(8): 1884–1890. https://doi.org/https://doi.org/10.14233/ajchem.2023.28052.
29. Szychowski, K. A.; Leja, M. L.; Kaminskyy, D. V.; Binduga, U. E.; Pinyazhko, O. R.; Lesyk, R. B.; Gmiński, J. Study of Novel Anticancer 4-Thiazolidinone Derivatives. Chem. Biol. Interact. 2017; 262: 46–56. https://doi.org/10.1016/j.cbi.2016.12.008.
30. Senkardes, S.; Kucukguzel, S. Recent Progress on Synthesis and Anticancer Activity of 4-Thiazolidinone. Mini. Rev. Org. Chem. 2016; 13(5): 377–388. https://doi.org/10.2174/1570193x13666160826154159.
31. Kobylinska, L. I.; Boiko, N. M.; Panchuk, R. R.; Grytsyna, I. I.; Klyuchivska, O. Y.; Biletska, L. P.; Lesyk, R. B.; Zimenkovsky, B. S.; Stoika, R. S. Putative Anticancer Potential of Novel 4-Thiazolidinone Derivatives: Cytotoxicity toward Rat C6 Glioma in Vitro and Correlation of General Toxicity with the Balance of Free Radical Oxidation in Rats. Croat. Med. J. 2016; 57(2): 151–164. https://doi.org/10.3325/cmj.2016.57.151.
32. Ture, A.; Ergül, M.; Ergül, M.; Altun, A.; Küçükgüzel, I. Design, Synthesis, and Anticancer Activity of Novel 4-Thiazolidinone-Phenylaminopyrimidine Hybrids. Mol. Divers. 2020. https://doi.org/10.1007/s11030-020-10087-1.
33. Kulabaş, N.; Ozakpinar, O. B.; Özsavcı, D.; Leyssen, P.; Neyts, J.; Küçükgüzel, İ. Synthesis, Characterization and Biological Evaluation of Thioureas, Acylthioureas and 4-Thiazolidinones as Anticancer and Antiviral Agents. Marmara Pharm. J. 2017; 21(2): 371–384. https://doi.org/10.12991/marupj.300913.
34. Senkardes, S.; Kucukguzel, S. G. Recent Progress on Synthesis and Anticancer Activity of 4-Thiazolidinone. 2021; No. 13(5).
35. Mahmood, F. F. Optimization Geometry of Benzamide and Di-Fluorine Benzamide Molecules. Res. J. Pharm. Technol. 2018; 11(9): 3978–3982. https://doi.org/10.5958/0974-360X.2018.00731.X.
36. Nair, N. P.; Joy, J.; Kumar, S. S.; Sathianarayanan, S.; Manakadan, A. A.; Saranya, T. S. In- Silico Docking Studies of Coumarin Derivatives as Caspase 8 and PDE4 Antagonist. Res. J. Pharm. Technol. 2016; 9(12): 2199–2204. https://doi.org/10.5958/0974-360X.2016.00445.5.
37. Kadam, D.; Patil, S.; Kadam, S.; Doshi, A.; Patel, F. Synthesis of Novel 5-Arylidine-3-Ethyl-2-(2, 4, 5-Trifluorophenylimino)-Thiazolidin-One Derivatives Using Ultrasonic Knoevengel Conditions and Evaluation of Its Antimicrobial Activity. JETIR 2022; 9(8): 691–698. https://doi.org/http://doi.one/10.1729/Journal.31452.
38. Kadam, S. D.; Mammen, D.; Kadam, D. S.; Patil, S. G. In Silico Molecular Docking against C-KIT Tyrosine Kinase and ADME Studies of 3-Ethyl-2-(2,3,4-Trifluoro-Phenylimino)-Thiazolidin-4-One Derivatives. Asian J. Res. Chem. 2023; 16(1): 13–22. https://doi.org/http://dx.doi.org/10.52711/0974-4150.2023.00010.
39. Kadam, D. S.; Patil, G. S.; Mammen, D.; Kadam, S. D.; More, V. In Silico Molecular Docking Againstc- KIT Tyrosine Kinase and ADME Studies of 4- Thiazolidinone Derivatives. J. Appl. Organomet. Chem. 2023; 3(1): 13–27. https://doi.org/https://doi.org/10.22034/jaoc.2023.355363.1058.
40. Shaty, M. H.; Al-Ezzi, M. I.; Arif, I. S.; Basil, D. Effect of Metformin on Inflammatory Markers Involved in Cardiotoxicity Induced by Doxorubicin. Res. J. Pharm. Technol. 2019; 12(12): 5815–5821. https://doi.org/10.5958/0974-360X.2019.01007.2.
41. Parameswari, P.; Devika, R. In Silico Molecular Docking Studies of Quercetin Compound against Anti-Inflammatory and Anticancer Proteins. Res. J. Pharm. Technol. 2019; 12(11): 5305–5309. https://doi.org/10.5958/0974-360X.2019.00919.3.
42. Nikhila, G.; Naveen, P.; Udayakumar, D.; Manjunatha, K. Indole-3-Carbinol and 1,3,4-Oxadiazole Hybrids: Synthesis and Study of Anti-Proliferative and Anti-Microbial Activity. Aust. J. Chem. 2015; 68: 1603–1613. https://doi.org/https://doi.org/10.1071/CH15116.
43. Mol, C. D.; Dougan, D. R.; Schneider, T. R.; Skene, R. J.; Kraus, M. L.; Scheibe, D. N.; Snell, G. P.; Zou, H.; Sang, B. C.; Wilson, K. P. Structural Basis for the Autoinhibition and STI-571 Inhibition of c-Kit Tyrosine Kinase. J. Biol. Chem. 2004; 279(30): 31655–31663. https://doi.org/10.1074/jbc.M403319200.