Author(s):
Lintang Cahyaning Ratri, Shidi Laras Pramudito, Bendix Samarta Witarto, Jongky Hendro Prajitno, Citrawati Dyah Kencono Wungu, Hermina Novida, Robert Dwitama Adiwinoto
Email(s):
jongky-h-p@fk.unair.ac.id
DOI:
10.52711/0974-360X.2024.00700
Address:
Lintang Cahyaning Ratri1, Shidi Laras Pramudito1, Bendix Samarta Witarto1, Jongky Hendro Prajitno2*, Citrawati Dyah Kencono Wungu3,4, Hermina Novida2, Robert Dwitama Adiwinoto2
1Medical Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
2Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia.
3Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
4Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
Objectives: Over the years, the increasing number of diabetes mellitus cases has drawn special attention in which diabetes screening becomes a crucial effort to prevent burdensome complications. The current practice of screening and monitoring diabetes mellitus requires an invasive method to retrieve blood samples, which may be inconvenient to patients. However, no meta-analysis has examined hyperglycemia conditions in nail protein compositions. Therefore, this study aims to identify the potential of nail glycation examination as a non-invasive diagnostic tool in diabetes mellitus. Methods: A systematic search was conducted in electronic databases and the collected literatures then were further reviewed. A bivariate random-effect meta-analysis was conducted to estimate the pooled parameter of diagnostic values. The study protocol was registered in PROSPERO CRD42021267633. Results: The five studies with a total of 885 participants included in this study yielded a pooled result of sensitivity and specificity reaching 87% (95% CI: 0.57?0.97) and 93% (95% CI: 0.69?0.99), with the area under the curve of 96% (95% CI: 0.94?0.97). Conclusion: In conclusion, nail glycation examination has good potential as a non-invasive diagnostic tool in diagnosing diabetes mellitus.
Cite this article:
Lintang Cahyaning Ratri, Shidi Laras Pramudito, Bendix Samarta Witarto, Jongky Hendro Prajitno, Citrawati Dyah Kencono Wungu, Hermina Novida, Robert Dwitama Adiwinoto. The Potential of Nail Glycation Examination for Detecting Diabetes Mellitus: A Systematic Review and Meta-Analysis. Research Journal of Pharmacy and Technology. 2024; 17(9):4528-4. doi: 10.52711/0974-360X.2024.00700
Cite(Electronic):
Lintang Cahyaning Ratri, Shidi Laras Pramudito, Bendix Samarta Witarto, Jongky Hendro Prajitno, Citrawati Dyah Kencono Wungu, Hermina Novida, Robert Dwitama Adiwinoto. The Potential of Nail Glycation Examination for Detecting Diabetes Mellitus: A Systematic Review and Meta-Analysis. Research Journal of Pharmacy and Technology. 2024; 17(9):4528-4. doi: 10.52711/0974-360X.2024.00700 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-61
REFERENCES:
1. Oh S, Ku H, Park K. Prevalence and socioeconomic burden of diabetes mellitus in South Korean adults: a population‒based study using administrative data. BMC Public Health. 2021; (21): 1.
2. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020; 10(1): 1-11.
3. Diabetes. WHO International. 2022, https://www.who.int/en/news‒room/fact‒sheets/detail/diabetes [accessed 27 September 2022]
4. O'Connell JM, Manson SM. Understanding the Economic Costs of Diabetes and Prediabetes and What We May Learn About Reducing the Health and Economic Burden of These Conditions. Diabetes Care. 2019; 42(9): 1609-1611. doi: 10.2337/dci19-0017. PMID: 31431494; PMCID: PMC6702611.
5. Hidayat B, Ramadani R, Rudijanto A, Soewondo P, Suastika K, Siu Ng J. Direct Medical Cost of Type 2 Diabetes Mellitus and Its Associated Complications in Indonesia. Value in Health Regional Issues. 2022; 28: 82-89.
6. Ong W, Chua S, Ng C. Barriers and facilitators to self‒monitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study. Patient Preference and Adherence. 2014; 8: 237-246.
7. Heinemann L. Finger Pricking and Pain: A Never Ending Story. Journal of Diabetes Science and Technology. 2008; 2(5): 919-921.
8. Pavithran A, Ramamoorthy L, Bs S, Murugesan R, Mj K. Comparison of Fingertip vs Palm Site Sampling on Pain Perception, and Variation in Capillary Blood Glucose Level among Patients with Diabetes Mellitus. J Caring Sci. 2020; 9(4): 182-187.
9. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10: Analysing and Presenting Results. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1.0. The Cochrane Collaboration, 2010. Available from:http://srdta.cochrane.org/.
10. Page M, McKenzie J, Bossuyt P, Boutron I, Hoffmann T, Mulrow C, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71.
11. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MM, et al. QUADAS‒2 Group. QUADAS‒2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8): 529-36. doi: 10.7326/0003-4819-155-8-201110180-00009. PMID: 22007046.
12. StataCorp. 2019. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC.
13. Van Enst, W.A., Ochodo, E., Scholten, R.J., Hooft, L., Leeflang, M.M.,. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC Med Res Methodol. 2014; 14(70).
14. Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr. 2011; 48(4): 277-87.
15. Hajian‒Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp J Intern Med. 2013; 4(2): 627.
16. Takwoingi Y, Leeflang M, Deeks J. Empirical Evidence of the Importance of Comparative Studies of Diagnostic Test Accuracy. Annals of Internal Medicine. 2013; 158(7): 544.
17. Coopman R, Van de Vyver T, Kishabongo AS, Katchunga P, Van Aken EH, Cikomola J, et al. Glycation in human fingernail clippings using ATR‒FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem. 2016; 50(1-2): 62-7.
18. Katchunga PB, Mirindi PN, Kishabongo AS, Cikomola JC, Bwanamdogo S, Philippé J, et al. Original papers Congolese Diabetics. 2015; 25(3): 469-73.
19. Kishabongo AS, Katchunga P, Van Aken EH, Speeckaert MM, Lagniau S, Husein D, et al. Glycated nail proteins: A new approach for detecting diabetes in developing countries. Trop Med Int Heal. 2014; 19(1): 58-64.
20. Jurgeleviciene I, Stanislovaitiene D, Tatarunas V, Jurgelevicius M, Zaliuniene D. Assessment of absorption of glycated nail proteins in patients with diabetes mellitus and diabetic retinopathy. Med. 2020; 56(12): 1-13.
21. Monteyne T, Coopman R, Kishabongo AS, Himpe J, Lapauw B, Shadid S, et al. Analysis of protein glycation in human fingernail clippings with near‒infrared (NIR) spectroscopy as an alternative technique for the diagnosis of diabetes mellitus. Clin Chem Lab Med. 2018; 56(9): 1551-8.
22. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 1 January 2021; 44 (Supplement_1): S15-S33.
23. Klonoff D. Hemoglobinopathies and HemoglobinA1c in Diabetes Mellitus. Journal of Diabetes Science and Technology. 2019; 14(1): 3-7.
24. Kweka B, Lyimo E, Kidola J, Filteau S, Friis H, Manjurano A et al. Validity of HbA1c in Diagnosing Diabetes Among People with Sickle Cell Trait in Tanzania. Blood. 2019; 134(Supplement_1): 4852-4852.
25. Kramer CK, Araneta MRG, Barrett‒Connor E. A1C and Diabetes Diagnosis: The Rancho Bernardo Study. Diabetes Care. 2010; 33(1): 101.
26. Yap CW, Ang YG, Quek TPL, Heng BH, Chew DEK. Re‒examining the sensitivity of HbA1c to screen for diabetes mellitus. J Diabetes. 2018; 10(5): 380-5.
27. Cashman MW, Sloan SB. Nutrition and nail disease. Clin Dermatol. 2010; 28(4): 420-5.
28. Buell C, Kermah D, Davidson MB. Utility of A1C for Diabetes Screening in the 1999–2004 NHANES Population. Diabetes Care. 2007; 30(9): 2233-5.
29. Kishabongo AS, Katchunga P, Van Aken EH, Speeckaert R, Lagniau S, Coopman R, et al. Glycation of nail proteins: From basic biochemical findings to a representative marker for diabetic glycation‒associated target organ damage. PLoS One. 2015; 10(3): 1-13.
30. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Vol. 18, Korean Journal of Physiology and Pharmacology. Korean Physiological Soc. and Korean Soc. of Pharmacology. 2014: 1-14.
31. Raju TS. Glycation of Proteins. In: Co and Post‒Translational Modifications of Therapeutic Antibodies and Proteins. Hoboken, NJ, USA: John Wiley & Sons, Inc. 2019: 51-62.
32. Rice RH, Xia Y, Alvarado RJ, Phinney BS. Proteomic analysis of human nail plate. J Proteome Res. 2010; 9(12): 6752-8.
33. Saeedi P, Shavandi A, Meredith‒Jones K. Nail Properties and Bone Health: A Review. J Funct Biomater. 2018; 9(2):31.
34. Zhang Q, Tang N, Brock JWC, Mottaz HM, Ames JM, Baynes JW, et al. Enrichment and analysis of nonenzymatically glycated peptides: Boronate affinity chromatography coupled with electron‒transfer dissociation mass spectrometry. J Proteome Res. 2007; 6(6): 2323–30.