Author(s):
Brito Raj S, Lakshmi K, Meenakshi R, Bhaskar Reddy K, Karthikeyan R, Vijayakumar B
Email(s):
send2brito@gmail.com
DOI:
10.52711/0974-360X.2024.00696
Address:
Brito Raj S1*, Lakshmi K2, Meenakshi R3, Bhaskar Reddy K4, Karthikeyan R5, Vijayakumar B6
1School of Pharmacy, Dhanalakshmi Srinivasan University, Samayapuram, Trichy - 621112, Tamilnadu, India.
2Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam – 603103, Chennai, Tamilnadu, India.
3Department of Pharmaceutics, College of Pharmacy, Madras Medical College, Chennai - 600 003.
4Apollo Institute of Pharmaceutical Sciences, The Apollo University, Murukambattu - 517127, Andhra Pradesh, India.
5School of Pharmacy, A Unit of Sri Balaji Vidyapeeth (Deemed to be University), SBV Campus, Pillaiyarkuppam, Pondicherry - 607 402, India.
6Grace College of Pharmacy, Athalur, Melamuri Kottayi Road, Kodunthirapully, Palakkad, Kerala - 678004, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
Sunitinib malate is an oral multikinase inhibitor used in the treatment of renal cell carcinoma and other cancers, including gastrointestinal stromal tumors. Protein-ligand docking studies are widely used to predict the binding affinity of ligands. The binding of bivalent metals is expected to enhance the ligand's binding affinity to the protein. CB-Dock software is one of the commercial tools available for protein-ligand docking. The main objective of this study is to estimate the binding affinity of the Sunitinib malate drug to the tyrosine kinase protein. Additionally, the study aims to determine if the binding affinity increases when Sunitinib malate is complexed with different bivalent metals (Cu, Fe, Zn). Docking studies were conducted between Sunitinib malate and the tyrosine kinase receptor using CB-Dock software. The binding affinities of Sunitinib malate and its complexes with copper, iron, and zinc were evaluated. The binding affinity of Sunitinib malate alone to tyrosine kinase was found to be -7.1. When complexed with copper, the binding affinity improved to -7.5. However, the binding affinities for the Sunitinib-iron and Sunitinib-zinc complexes were -6.9 and -6.8, respectively. From the data, it can be concluded that the Sunitinib malate-copper complex demonstrates a higher binding affinity (-7.5) compared to Sunitinib malate alone (-7.1) and its complexes with iron (-6.9) and zinc (-6.8). Therefore, the Sunitinib-copper complex can be optimized for formulations to enhance its binding affinity and drug-targeting efficiency.
Cite this article:
Brito Raj S, Lakshmi K, Meenakshi R, Bhaskar Reddy K, Karthikeyan R, Vijayakumar B. Comparing the binding energies and inhibition constant of Sunitinib malate-metal complex on Tyrosine kinase receptor by Computational Molecular Docking. Research Journal of Pharmacy and Technology. 2024; 17(9):4501-6. doi: 10.52711/0974-360X.2024.00696
Cite(Electronic):
Brito Raj S, Lakshmi K, Meenakshi R, Bhaskar Reddy K, Karthikeyan R, Vijayakumar B. Comparing the binding energies and inhibition constant of Sunitinib malate-metal complex on Tyrosine kinase receptor by Computational Molecular Docking. Research Journal of Pharmacy and Technology. 2024; 17(9):4501-6. doi: 10.52711/0974-360X.2024.00696 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-57
REFERENCES:
1. Berman HM. Westbrook J. Feng Z. Gilliland G. Bhat TN. Weissig H. Shindyalov IN. Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000; 28(1): 235-42. doi: 10.1093/nar/28.1.235.
2. Baskaran C. Ramachandran M. Computational molecular docking studies on anticancer drugs. Asian Pacific Journal of Tropical Disease. 2012; 1(2): S734-8. 10.1016/S2222-1808(12)60254-0.
3. Shumi G. Desalegn T. Demissie TB. Ramachandran VP. Eswaramoorthy R. Metal Complexes in Target-Specific Anticancer Therapy: Recent Trends and Challenges. Journal of Chemistry. 2022; 17: 1-19 https://doi.org/10.1155/2022/9261683
4. Tarasi F. Lanza PA. Ferretti V. Echeverría GA. Piro OE. Cacicedo M. Gehring S. León IE. Islas MS. Synthesis and Characterization of Novel Copper (II)-Sunitinib Complex: Molecular Docking, DFT Studies, Hirshfeld Analysis and Cytotoxicity Studies. Inorganics. 2022; 10(1): 3. https://doi.org/10.3390/inorganics10010003
5. Liu Y. Grimm M. Dai Wt. CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin. 2020; 41: 138–144. https://doi.org/10.1038/s41401-019-0228-6
6. Deeks ED.Keating GM. Sunitinib. Drugs. 2006; 66(17): 2255-66. doi: 10.2165/00003495-200666170-00007.
7. Kabir MZ. Tee WV. Mohamad SB. Alias Z. Tayyab S. Comprehensive insight into the binding of sunitinib, a multi-targeted anticancer drug to human serum albumin. Spectrochim Acta A Mol Biomol Spectrosc. 2017; 181: 254-263. doi:10.1016/j.saa.2017.03.059
8. Ahmed MM. Anwer MK. Fatima F. Aldawsari MF. Alalaiwe A. Alali AS. Alharthi AI. Kalam MA. Boosting the anticancer activity of sunitinib malate in breast cancer through lipid polymer hybrid nanoparticles approach. Polymers. 2022; 14(12): 2459. https://doi.org/10.3390/polym14122459
9. Le Tourneau C. Raymond E. Faivre S. Sunitinib: a novel tyrosine kinase inhibitor. A brief review of its therapeutic potential in the treatment of renal carcinoma and gastrointestinal stromal tumors (GIST). Ther Clin Risk Manag. 2007; 3(2): 341-8. doi: 10.2147/tcrm.2007.3.2.341.
10. Yang Q. Wang Y. Yang Q. Cuprous oxide nanoparticles trigger ER stress-induced apoptosis by regulating copper trafficking and overcoming resistance to sunitinib therapy in renal cancer. Biomaterials. 2017; 146: 72-85. doi:10.1016/j.biomaterials.2017.09.008
11. Singh K. Barwa MS. Tyagi P. Synthesis and characterization of cobalt (II), nickel (II), copper (II) and zinc (II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine. Eur J Med Chem. 2007; 42(3): 394-402. doi: 10.1016/j.ejmech.2006.10.016.
12. Valecha Sheela M. Synthesis and characterization of manganese (II), cobalt (II), nickel (II), copper (II), and zinc (II) mixed ligand complexes with [(1-phenyl-3- methyl-5- hydroxopyrazol-4-yl) methylimino] 2′, 3′ dimethylaniline and 2- hydroxy-1-naphthaldehyde. Asian Journal of Research in Chemistry. 2015; 8(11): 693- 696. DOI: 10.5958/0974-4150.2015.00111.X
13. Madhumita Hazra. Tanushree Dolai. Akhil Pandey. Subrata Kumar Dey. Animesh Patra. Synthesis and Characterisation of Copper (II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application, 2014; 1-13. https://doi.org/10.1155/2014/104046
14. Khatua SK. Nayak SC. Das PK. Guin RR. Design, Synthesis and Physico-Chemical Investigation of the Iron (II) Complexes Containing Heterocyclic Nitrogen Donor Ligands. Asian J. Research Chem. 2012; 5(4): 529-531. https://www.ajrconline.org/AbstractView.aspx?PID=2012-5-4-17.
15. Yang Liu. Xiaocong Yang. Jianhong Gan. Shuang Chen. Zhi-Xiong Xiao. Yang Cao. CB-Dock2: improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research. 2022; 50(W1): W159–W164. https://doi.org/10.1093/nar/gkac394.
16. Zhang M. Hu G. Shao N. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology. 2021; 29(5): 1317-1329. doi:10.1007/s10787-021-00861-4.
17. Farhan MM. Guma MA. Rabeea MA. Ahmad I. Patel H. Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. Journal of Molecular Structure. 2022; 1269: 133781. https://doi.org/10.1016/j.molstruc.2022.133781.
18. Chen QB. Zhou LY. Shi LX. Cheng Y. Wu K. Yuan Q. Dong ZJ. Gu HZ. Zhang XZ. Zou T. Platinum (IV) Complex-Loaded nanoparticles with photosensitive activity for cancer therapy. Coordination Chemistry Reviews. 2022; 472: 214789. DOI:10.1016/j.ccr.2022.214789.
19. Gupta YK. Vinita Gupta. Sanchita Singh. Synthesis, Characterization and Antimicrobial Activity of Cu (II), Co (II), Ni (II) and Zn (II), Complexes with O-N donor ligand. Int. J. Tech. 2014; 4(2): 283-286.
20. Nandhini S. Radha R. Vadivu R. Docking of Hematoporphyrin on Various Anticancer Drugs Targeting Enzymes. Asian J. Pharm. Res. 2016; 6(3): 123-130. doi: 10.5958/2231-5691.2016.00019.8.
21. Sushil Dagadu Patil. Kardele Vinayak. Balsubraniyan. Shaikh Anwar. Docking Studies and Synthesis of Novel Flavones Screened for Biological Activities like Anticancer and Antioxidant Activity. Asian J. Research Chem. 2015; 8(6): 399-406. doi: 10.5958/0974-4150.2015.00066.8.
22. Kishore Kumar Valluri. Tejeswara Rao Allaka. IV Kasi Viswanath. Nagaraju PVVS. Design, molecular docking studies of oxaprozin linked to 4-thiazolidinone derivatives as a potent anticancer, analgesic and anti-inflammatory agent. Asian J. Research Chem. 2018; 11(3): 617-627. doi: 10.5958/0974-4150.2018.00111.6.
23. Sathish Kumar M. Vijey Aanandhi M. An Insight into the Therapeutic Potential of Pyridopyrimidines as Anticancer Agents. Research J. Pharm. and Tech. 2018; 11(3): 1259-1269. doi: 10.5958/0974-360X.2018.00235.4.
24. Venkatesh Kamath. Aravinda Pai. Rohith Raj. In Silico approach for the Rational Design of Tankyrase I Inhibitors–A Case Study on Flavone based Anticancer Leads. Research J. Pharm. and Tech 2018; 11(10): 4511-4514. doi: 10.5958/0974-360X.2018.00825.9.
25. Suko Hardjono.Tri Widiandani. Bambang T. Purwanto. Anindi L. Nasyanka. Molecular Docking of N-benzoyl-N'-(4-fluorophenyl) thiourea Derivatives as Anticancer Drug Candidate and Their ADMET prediction. Research J. Pharm. and Tech. 2019; 12(5): 2160-2166. doi: 10.5958/0974-360X.2019.00359.7.
26. Roymahapatra G. Mandal SM. Porto WF. Samanta T. Giri S. Dinda J. Franco OL. Chattaraj PK. Pyrazine functionalized Ag(I) and Au(I)-NHC complexes are potential antibacterial agents. Curr Med Chem. 2012; 19(24): 4184-93. doi: 10.2174/092986712802430090.