Author(s): Harish Kumar, Sunil Sharma, Neeru Vasudeva

Email(s): harishbishnoi88@yahoo.com

DOI: 10.52711/0974-360X.2024.00695   

Address: Harish Kumar*, Sunil Sharma, Neeru Vasudeva
Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology University, Hisar - 125001, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 9,     Year - 2024


ABSTRACT:
The present study is focused on the potential nephroprotective benefits of plant extracts when used alone or in combination therapy. The existing research study streptozotocin (60mg/kg) model was used to develop diabetes and its consequences, such as neuropathy and nephropathy. One of the key indicators of nephropathic consequences leading to changes in renal function.The obtained results demonstrated that the treatment of diabetic nephropathy was significantly improved by Calotropis gigantea (500mg/kg) both alone and in combination with Cucumis pubescens (500mg/kg). It might be concluded that in diabetes mellitus persuaded lipid dysregulation and oxidative stress in association with increase in blood glucose levels plays a key role in the commencement of nephropathy in diabetic rats. Along with modern allopathic medicine, treatment needs multidrug therapy; and besides the treatment, various complications are associated with these marketed medicines. The results of lipid profile abnormalities, oxidative stress, glycemic management, serum creatinine level, and blood urea regulation revealed that plants might potentially control and treat diabetic-induced diabetic nephropathy.Extracts of the Calotropisgiganteaand Cucumispubescens play a considerable and tremendous effect in the management of diabetic nephropathy.


Cite this article:
Harish Kumar, Sunil Sharma, Neeru Vasudeva. Amalgamation of Herbal extracts in the Experimentally Persuades Diabetic Nephropathy impediments in the Wistar Albino Rats. Research Journal of Pharmacy and Technology. 2024; 17(9):4493-0. doi: 10.52711/0974-360X.2024.00695

Cite(Electronic):
Harish Kumar, Sunil Sharma, Neeru Vasudeva. Amalgamation of Herbal extracts in the Experimentally Persuades Diabetic Nephropathy impediments in the Wistar Albino Rats. Research Journal of Pharmacy and Technology. 2024; 17(9):4493-0. doi: 10.52711/0974-360X.2024.00695   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-56


REFERENCES:
1.    Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018; 98(4): 2133-2223. DOI: 10.1152/physrev.00063.2017.
2.    Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005 May; 26(2): 19-39. PMID: 16278749; PMCID: PMC1204764.
3.    Radhika C. K., Asha Raj. Uremic Hypoglycemia. Asian J. Nur. Edu. and Research. 2017; 7(3): 445-448. doi: 10.5958/2349-2996.2017.00087.8
4.    Eswarudu MM, Ouchitya G, Reddy NS, Deekshitha M, Babu PS. Review on Analytical Methods for Estimation of Antidiabetic Drugs: Empagliflozin, Linagliptin and Metformin Hydrochloride. Asian Journal of Pharmaceutical Analysis. 2023; 13(1): 42-6. doi: 10.52711/2231-5675.2023.00007.
5.    Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev. 2012; 6(11):1-5. doi: 10.4103/0973-7847.95849. PMID: 22654398; PMCID: PMC3358962.
6.    Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med. 2013; 10(5): 210-29. doi: 10.4314/ajtcam.v10i5.2.
7.    Sawant SS, Randive VR, Kulkarni SR. Lectins from seeds of Abrus precatorius: Evaluation of Antidiabetic and Antihyperlipidemic Potential in Diabetic Rats. Asian J. Pharm. Res. 2017; 7(2): 71-80.
8.    Savant PB, Kareppa MS, Karwa PN, Birajdar N, Jangid MS. Herbal Drugs used in the Management of Diabetic Nephropathy. Asian Journal of Pharmaceutical Research. 2022; 12(1): 54-6. doi: 10.52711/2231-5691.2022.00009
9.    Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med. 2020; 10(4): 174-188. doi: 10.4103/ajm.ajm_53_20.
10.    Giugliano D, Ceriello A, Esposito K. Glucose metabolism and hyperglycemia. The American Journal of Clinical Nutrition 2008; 87(1): 217–222. doi: 10.1093/ajcn/87.1.217S.
11.    Su J, Luo Y, Hu S, Tang L, Ouyang S. Advances in Research on Type 2 Diabetes Mellitus Targets and Therapeutic Agents. Int J Mol Sci. 2023; 24(17): 13381. doi: 10.3390/ijms241713381.
12.    Martínez-Castelao A. Diabetes Mellitus and Diabetic Kidney Disease: The Future Is Already Here. J Clin Med. 2023; 12(8): 2914. doi: 10.3390/jcm12082914.
13.    Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol. 2021; 69(11): 2932-2938. doi: 10.4103/ijo.IJO_1627_21.
14.    Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. 2020; 10(1): 107-111. doi: 10.2991/jegh.k.191028.001.
15.    Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front Endocrinol (Lausanne). 2017; 8: 6. doi: 10.3389/fendo.2017.00006.
16.    Salehi B, Ata AV, Kumar AN, et al. Antidiabetic Potential of Medicinal Plants and Their Active Components. Biomolecules 2019; 9(10): 551.
17.    Patel DK, Prasad SK, Kumar R, Hemalatha S.  An overview on antidiabetic medicinal plants having insulin mimetic property.  Asian Pac J Trop Biomed. 2012; 2(4): 320-30.doi: 10.1016/S2221-1691(12)60032-X.
18.    Kumar G, Karthik L, Venkat K, Rao B, Rao KV.  A Review on Pharmacological and Phytochemical Profile of Calotropis Gigantea Linn. Pharmacology online. 2011;1: 1-8.
19.    Kumar H, Sharma S, Vasudeva N. Pharmacological Profile of Calotropis Gigantea in various diseases: A Profound Look. IJCRT 2021; 9: 2.
20.    Bairagi SM, Ghuze P, Gilhotra R.  Pharmacology of Natural Products: An recent approach on Calotropis gigantea and Calotropis procera. Ars Pharm. 201859(1): 37-44.
21.    Srivastava AK, Mukerjee A, Tripathi A. Antidiabetic and antihyperlipidemic activities of Cucumis melo var. momordica fruit extract on experimental animals. Futur J Pharm Sci. 2020; 6: 92. https://doi.org/10.1186/s43094-020-00116-z.
22.    Gopalasatheeskumar K, Ariharasivakumar G, Kalaichelvan VK, Sengottuvel T, Devan VS, Srividhya V. Antihyperglycemic and antihyperlipidemic activities of wild musk melon (Cucumis melo var. agrestis) in streptozotocin-nicotinamide induced diabetic rats. Chin Herb Med. 2020; 12(4): 399-405. doi: 10.1016/j.chmed.2020.02.005.
23.    Kumar H, Sharma S, Vasudeva N. Evaluation of nephroprotective and antioxidant potential of Cucumis pubescens in rats. Journal of Medical Pharmaceutical and Allied Sciences. 2021; 10(5): 3648 – 3652.
24.    Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, Miraldi E, Biagi M. Phytotherapy in the Management of Diabetes: A Review. Molecules. 2018; Jan 4; 23(1): 105. doi: 10.3390/molecules23010105.
25.    Rathod NR, Chitme HR, Irchhaiya R, Chandra R. Hypoglycemic Effect of Calotropis gigantea Linn. Leaves and Flowers in Streptozotocin-Induced Diabetic Rats. Oman Med J. 2011; Mar; 26(2): 104-8. doi: 10.5001/omj.2011.26.
26.    Kumar H, Sharma S, Vasudeva N. Plant Calotropis gigantea: Management of Diabetic Nephropathy in Experimentally Induced Diabetes in Rats. Research J. Pharm. and Tech. 2022; 15(3): 1090-6.
27.    Babulreddy N, Sahoo SP, Ramachandran S, Dhanaraju MD. Anti-Hyperglycemic activity of cucumis melo leaf extracts in streptozotocin induced hyperglycemia in rats. International Journal of Pharmaceutical Research and Allied Sciences. 2013; 2(4): 22-27. ISSN 2277-3657.
28.    Macharla SP, Goli V, Nath AR. Antidiabetic Activity of Bambusa arundinaceae Root Extracts on Alloxan Induced Diabetic Rats. Asian J. Res. Pharm. Sci. 2012; 2(2): 73-75.
29.    Thennarasan S, Murugesan S, Sivamurugan V. Antidiabetic efficacy of Methanol extract Brown Alga Lobophora variegata on Alloxan stimulated Hyperglycemic Wistar Albino Rats. Asian J. Pharm. Tech. 2017; 7(3): 157-165. doi: 10.5958/2231-5713.2017.00026.5
30.    Balakumar P, Bishnoi HK, Mahadevan N. Telmisartan in the management of diabetic nephropathy: a contemporary view. Curr Diabetes Rev. 2012; 8(3): 183-90. doi: 10.2174/157339912800563972.
31.    Bishnoi HK, Mahadevan N, Balakumar P. The combined strategy with PPARα agonism and AT₁ receptor antagonism is not superior relative to their individual treatment approach in preventing the induction of nephropathy in the diabetic rat. Pharmacol Res. 2012 Oct; 66(4): 349-56. doi: 10.1016/j.phrs.2012.07.001.
32.    Beula SJ, Suthakaran R, Viswaja M, Shankar CH, Lakshmi GS. Anti-diabetic effect of Gymnema sylvestre an Alloxan-Induced Diabetic in Male Albino Wistar Rats. Asian Journal of Pharmacy and Technology. 2023; 13(1): 34-0. DOI: 10.52711/2231-5713.2023.00007.
33.    Sugumaran M, Vetrichelvan T, Quine SD. Antidiabetic potential of aqueous and alcoholic leaf extracts of Pithecellobium dulce. Asian J. Research Chem. 2009; 2(1): 83-85.
34.    Lim AKh. Diabetic nephropathy - complications and treatment. Int J Nephrol Renovasc Dis. 2014; 15(7): 361-81.doi: 10.2147/IJNRD.S40172.
35.    Samarghandian S, Hadjzadeh MA, Amin Nya F, Davoodi S. Antihyperglycemic and antihyperlipidemic effects of guar gum on streptozotocin-induced diabetes in male rats. Pharmacogn Mag. 2012; 8(29): 65-72. doi: 10.4103/0973-1296.93328.
36.    Selvadurai S, Shanmugapandiyan PN. Antihyperglycemic andanti-lipidemic effects of ethanol leaf extracts of Sidaacutaburm and its complications in streptozotocin-induced diabetic wistar albino rats. Journal of Pharmaceutical Negative Results. 2022; 13(9): 2241–2254.
37.    Espinoza-Hernández FA, Andrade-Cetto A. Chronic Antihyperglycemic Effect Exerted by Traditional Extracts of Three Mexican Medicinal Plants. Evid Based Complement Alternat Med. 2022; 9; 2022: 5970358. doi: 10.1155/2022/5970358.
38.    Subramanian S, Rajeswari S, Prasath GS. Antidiabetic, Antilipidemic and Antioxidant Nature of Tridax procumbens Studied in Alloxan-Induced Experimental Diabetes in Rats: a Biochemical Approach. Asian J. Research Chem. 2011; 4(11): Nov., 1732-1738.
39.    Banerjee D, Winocour P, Chowdhury TA, De P, Wahba M, Montero R, Fogarty D, Frankel AH, Karalliedde J, Mark PB, Patel DC, Pokrajac A, Sharif A, Zac-Varghese S, Bain S, Dasgupta I; Association of British Clinical Diabetologists and The Renal Association. Management of hypertension and renin-angiotensin-aldosterone system blockade in adults with diabetic kidney disease: Association of British Clinical Diabetologists and the Renal Association UK guideline update 2021. BMC Nephrol. 2022; 23(1): 9. doi: 10.1186/s12882-021-02587-5.
40.    Erfanpoor S, Etemad K, Kazempour S, Hadaegh F, Hasani J, Azizi F, Parizadeh D, Khalili D. Diabetes, Hypertension, and Incidence of Chronic Kidney Disease: Is There any Multiplicative or Additive Interaction? Int J Endocrinol Metab. 2020; 19(1): e101061.doi: 10.5812/ijem.101061.
41.    Ahmed HH, Taha FM, Omar HS, Elwi HM, Abdelnasser M. Hydrogen sulfide modulates SIRT1 and suppresses oxidative stress in diabetic nephropathy. Mol Cell Biochem. 2019; 457(1-2): 1-9. doi: 10.1007/s11010-019-03506-x.
42.    Sakashita M, Tanaka T, Inagi R. Metabolic Changes and Oxidative Stress in Diabetic Kidney Disease. Antioxidants (Basel). 2021; Jul 19; 10(7): 1143. doi: 10.3390/antiox10071143.
43.    Uddin MJ, Kim EH, Hannan MA, Ha H. Pharmacotherapy against Oxidative Stress in Chronic Kidney Disease: Promising Small Molecule Natural Products Targeting Nrf2-HO-1 Signaling. Antioxidants (Basel). 2021; 10(2): 258. doi: 10.3390/antiox10020258.
44.    Djemoui A, Djemoui D, Souli L, Souadia A, Gouamid M. The Antidiabetic, Antioxidant properties in vitro of Moringa oleifera Flowers extracts grown in Sahara of Algeria. Asian Journal of Research in Chemistry. 2021; 14(3): 173-8. DOI: 10.52711/0974-4150.2021.00032.
45.    Suruse PB, Kale MK, Duragkar NJ, Gundawar A. Formulation and Evaluation of Antidiabetic Herbal Capsules. Research J. Pharma. Dosage Forms and Tech. 2011; 4(2): 113-118.
46.    Sao M, Sarwa KK, Yadav AP, Tandon S, Kori ML. “Sankat Mochan Drops”: A Polyherbal Marketed Formulation. Res. J. Pharma. Dosage Forms and Tech. 2019; 11(4): 257-263. DOI: 10.5958/0975-4377.2019.00043.0.
47.    Verma R, Rao L, Nagpal D, Yadav M, Kumar V, Kumar V, Kumar H, Parashar J, Bansal N, Kumar M, Pandey P, Mittal V, Kaushik D. Emerging Nanotechnology-based Therapeutics: A New Insight into Promising Drug Delivery System for Lung Cancer Therapy. Recent Pat Nanotechnol. 2023; Aug 3. doi: 10.2174/1872210517666230613154847.
48.    Purohit D, Saini M, Pathak N, Verma R, Kaushik D, Katiyar P, Jalwal P, Pandey P. COVID-19 ‘The Pandemic’: An Update on the Present Status of the Outbreak and Possible Treatment Options. Biomed Pharmacol J. 2020; 13(4).
49.    Sinha S, Thapa S, Singh S, Dutt R, Verma R, Pandey P, Mittal V, Rahman MH, Kaushik D. Development of Biocompatible Nanoparticles of Tizanidine Hydrochloride in Orodispersible Films: In vitro Characterization, Ex vivo Permeation, and Cytotoxic Study on Carcinoma Cells. Curr Drug Deliv. 2022; 19(10): 1061-1072. doi: 10.2174/1567201819666220321111338.
50.    Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved Pharmacodynamic Potential of Rosuvastatin by Self-Nanoemulsifying Drug Delivery System: An in vitro and in vivo Evaluation. Int J Nanomedicine. 2021; 16: 905-924. doi: 10.2147/IJN.S287665.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available