Author(s):
Heny Ekowati, Nur Intan Aditya Muninggar, Nialiana Endah Endriastuti, Hanif Nasiatul Baroroh
Email(s):
hanif.baroroh@unsoed.ac.id
DOI:
10.52711/0974-360X.2024.00694
Address:
Heny Ekowati, Nur Intan Aditya Muninggar, Nialiana Endah Endriastuti, Hanif Nasiatul Baroroh*
Department of Pharmacy, Faculty of Health Sciences, Jenderal Soedirman University, Purwokerto, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
The SARS-COV-2 virus is the cause of COVID-19, a disease that has spread to many countries. The COVID-19 Management Guidelines in Indonesia include azithromycin as one of the antibiotics used to treat COVID-19. Antibiotics are needed in patients with possible co-infection. This study aimed to determine the potential drug interaction of azithromycin with other therapy in hospitalized COVID-19 patients at the Banyumas Regional General Hospital. The study was descriptive observational research. The data was collected retrospectively based on medical records of hospitalized COVID-19 patients at the Banyumas Regional General Hospital from July 2020 to June 2021. The Lexi-Interact™ and Drugbank online is used to identify potential drug interactions. A total of 221 patients were included, with 122 patients (55.21%) being women. The number of patients experiencing potential-drug interactions was 199 patients (90%), with a number of potential drug interactions were 289 cases. The most potential drug interaction was azithromycin with omeprazole (85 cases - 29.41%). Most cases were moderate severity with pharmacokinetic interaction. This study concluded that the administration of azithromycin with other drugs for COVID-19 patients at the Banyumas Hospital has the potential for interactions that could be prevented by monitoring related side effects.
Cite this article:
Heny Ekowati, Nur Intan Aditya Muninggar, Nialiana Endah Endriastuti, Hanif Nasiatul Baroroh. Potential Drug-drug Interactions in COVID-19 patients treated with Azithromycin. Research Journal of Pharmacy and Technology. 2024; 17(9):4486-2. doi: 10.52711/0974-360X.2024.00694
Cite(Electronic):
Heny Ekowati, Nur Intan Aditya Muninggar, Nialiana Endah Endriastuti, Hanif Nasiatul Baroroh. Potential Drug-drug Interactions in COVID-19 patients treated with Azithromycin. Research Journal of Pharmacy and Technology. 2024; 17(9):4486-2. doi: 10.52711/0974-360X.2024.00694 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-55
REFERENCES:
1. Huang M, Tang T, Pang P, Li M, Ma R, Lu J, et al. Treating COVID-19 with Chloroquine. Journal of Molecular Cell Biology. 2020; 12(4): 322–5. https://doi.org/10.1093/jmcb/mjaa014.
2. Hui DS, I Azhar E, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases. 2020; 91: 264–6. https://doi.org/10.1016/j.ijid.2020.01.009.
3. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal. 2020; 133(9): 1015–24. 10.1097/CM9.0000000000000722.
4. Sheikhi K, Shirzadfar H, Sheikhi M. A Review on Novel Coronavirus (Covid-19): Symptoms, Transmission and Diagnosis Tests Research in Infectious Diseases and Tropical Medicine A Review on Novel Coronavirus (Covid-19): Symptoms, Transmission and Diagnosis Tests. Research in Infectious Diseases and Tropical Medicine. 2020; 2(1): 1–8. 10.33702/ridtm.2020.2.1.1.
5. Guan WJ, Liang WH, He JX, Zhong NS. Cardiovascular comorbidity and its impact on patients with COVID-19. European Respiratory Journal. 2020; 55(6): 1069–76. 10.1183/13993003.01227-2020.
6. National Institutes of Health. Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19). NIH. 2021;2019.
7. Waghchaure AG, Vikhe DN, Jadhav RS, Shinde GS. The ongoing Pharmacotherapy for ministration of Covid 19 disease: A Review. Research Journal of Science and Technology. 2022; 14(1): 66–72. http://dx.doi.org/10.52711/2349-2988.2022.00010.
8. Sultana J, Cutroneo PM, Crisafulli S, Puglisi G, Caramori G, Trifirò G. Azithromycin in COVID-19 Patients: Pharmacological Mechanism, Clinical Evidence and Prescribing Guidelines. Drug Safety. 2020; 43(8): 691–8. https://doi.org/10.1007/s40264-020-00976-7.
9. Anonim. Pedoman tatalaksana COVID-19 Edisi 3 Desember 2020. Pedoman Tatalaksana COVID-19 (In Indonesian version). 2020. 36–37 p.
10. Yadam N, Suhasin G. Prediction of COVID-19 severity associated with Pneumonia by chest CT scan and Serological results. Asian Journal of Pharmacy and Technology. 2021; 11(3). http://dx.doi.org/10.52711/2231-5713.2021.00032.
11. Anonim. Keputusan Menteri Kesehatan Republik Indonesia nomor hk.01.07/menkes/5671/2021 tentang Manajemen Klinis Tata Laksana COVID-19 (In Indonesian version). 2021; 2019.
12. Erviana R. Potensi Interaksi Obat pada Pasien Terdiagnosa Pneumonia di Yogyakarta. Pharmacy. 2017; 549(02): 40–2. http://dx.doi.org/10.30595/pharmacy.v14i2.1989.
13. Hendera, Rahayu S. Interaksi Antar Obat Pada Peresepan Pasien Rawat Inap Pediatrik Rumah Sakit X Dengan Menggunakan Aplikasi Medscape (In Indonesian version). Journal of Current Pharmaceutical Sciences. 2018; 1(2): 75–80. https://journal.umbjm.ac.id/index.php/jcps/article/view/125.
14. Jagadeesan M, Manikandan R, Sudha NSS. The drug-drug interactions: Affecting the rationality of prescriptions. Research Journal of Pharmacy and Technology. 2018; 11(7): 3077–80. http://dx.doi.org/10.5958/0974-360X.2018.00565.6.
15. Mutalib NA, Rafi MAAM, Latip NA. Revisiting cyp2c9-mediated drug-drug interactions: A review. Research Journal of Pharmacy and Technology. 2021; 14(11): 6166–72. http://dx.doi.org/10.52711/0974-360X.2021.01068.
16. Banerjee S. Interactions between common foods and drugs-a narrative review. Asian Journal of Pharmaceutical Research. 2020; 10(3): 188–94. http://dx.doi.org/10.5958/2231-5691.2020.00033.7.
17. Megarbane B, Scherrmann JM. Hydroxychloroquine and Azithromycin to Treat Patients With COVID-19: Both Friends and Foes? gooJournal of Clinical Pharmacology. 2020; 60(7): 808–14. https://doi.org/10.1002%2Fjcph.1646.
18. Nguyen LS, Dolladille C, Drici MD, Fenioux C, Alexandre J, Mira JP, et al. Cardiovascular Toxicities Associated With. 2020; 303–5. https://doi.org/10.1161/Circulationaha.120.048238.
19. Lisni I, Mujianti D, Anggriani A, Farmasi F, Kencana UB, Soekarno J, et al. Antibiotic Profile For COVID-19 Treatment In A Hospital In Bandung. Jurnal Ilmiah Farmako Bahari. 2021; 12(2): 99-106.
20. Yadav P, Rohane S, Velhal A. Adverse Drug Reactions and Comorbidities in Patient Treated for COVID-19. Asian Journal of Research in Chemistry. 2021; 14(6): 451–4. http://dx.doi.org/10.52711/0974-4150.2021.00079.
21. Chitra J, Monica A, Jyothi GK, Maheswari C, Venkatanarayanan R, Johnson UCJS. Conceptual and Practical Update on Drug-Drug Interactions. Research Journal of Pharmacy and Technology. 2016; 9(1): 60–8. http://dx.doi.org/10.5958/0974-360X.2016.00011.1.
22. Drugbank. Drugbank Drug Interaction Checker. 2022;
23. Barve A, Steven J, June Ke K, Crabbe R, Peter G, Menetrey A, et al. The Effect of CYP3A4 Induction and Inhibition on the Pharmacokinetics of Alisporivir in Humans. American College of Clinical Pharmacology. 2014; 4(1): 25–32. https://doi.org/10.1002/cpdd.114.
24. Sugimoto M, Furuta T. Efficacy of esomeprazole in treating acid-related diseases in Japanese populations. Clinical and Experimental Gastroenterology. 2012; 5: 49–59. https://www.tandfonline.com/doi/full/10.2147/CEG.S23926.
25. Fernanda M, Jardim C, Vinícius M, Barros O, Maciel R, Lima P De, et al. Pharmacological Effects and Toxicogenetic Impacts of Omeprazole: Genomic Instability and Cancer. Oxidative Medicine and Cellular Longevity. 2020; 2020. https://doi.org/10.1155/2020/3457890.
26. Mazaleuskaya LL, Sangkuhl K, Thorn CF, Fitzgerald GA, Altman RB, Klein TE, et al. HHS Public Access. 2016; 25(8): 416–26. https://doi.org/10.1097%2FFPC.0000000000000150.
27. Ikawati Z. Farmakologi Molekuler (In Indonesian version). Yogyakarta: Gadjah Mada University Press; 2018.
28. Lu ZK, Yuan J, Li M, Sutton SS, Rao GA, Jacob S, et al. Cardiac risks associated with antibiotics: Azithromycin and levofloxacin. Expert Opinion on Drug Safety. 2015; 14(2): 295–303. https://doi.org/10.1517/14740338.2015.989210.
29. Agstam S, Yadav A, Kumar-M P, Gupta A. Hydroxychloroquine and QTc prolongation in patients with COVID-19: A systematic review and meta-analysis. Indian Pacing and Electrophysiology Journal. 2021; 21(1): 36–43. https://doi.org/10.1016/j.ipej.2020.10.002.
30. van den Broek MPH, Möhlmann JE, Abeln BGS, Liebregts M, van Dijk VF, van de Garde EMW. Chloroquine-induced QTc prolongation in COVID-19 patients. Netherlands Heart Journal. 2020; 28(7–8): 406–9. https://doi.org/10.1007/s12471-020-01429-7.
31. Meid AD, Bighelli I, Machler S, Mikus G, Carra G, Castellazzi M, et al. Combination of QTc-prolonging drugs: towards disentangling pharmacokinetic and pharmacodynamic effects in their potentially additive nature. Therapeutic Advances in Psychopharmacology. 2017; 71(12): 251–64. https://doi.org/10.1177/2045125317721662.
32. Wiśniowska B, Tylutki Z, Wyszogrodzka G, Polak S. Drug-drug interactions and QT prolongation as a commonly assessed cardiac effect - comprehensive overview of clinical trials. BMC Pharmacology and Toxicology. 2016; 17(1): 1–15. 10.1186/s40360-016-0053-1.
33. Lexicomp. Uptodate Drug Interaction Checker: Lexicomp. 2022.
34. Karthika C, Sureshkumar R. P-Glycoprotein Efflux Transporters and Its Resistance Its Inhibitors and Therapeutic Aspects. Biomarkers and Bioanalysis Overview. 2020. 10.5772/intechopen.90430.
35. Mitchel MD, Thompson DC. The Role of Intestinal Efflux Transporters In Drug Absorption. Merck; 2022.
36. Wessler JD, Hil MP, Grip LT, Mendell J, Giugliano RP. The P-Glycoprotein Transport System and Cardiovascular Drugs. 2013; 61(25). http://dx.doi.org/10.1016/j.jacc.2013.02.058.
37. Fohner AE, Sparreboom A, Altman RB, Klein TE. PharmGKB summary: macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Physiology and behavior. 2017; 27(4): 164–147. https://doi.org/10.1097%2FFPC.0000000000000270.
38. Finch A, Pillans P. P-glycoprotein and its role in drug-drug interactions. Australian Prescriber. 2014; 37(4): 137–9. https://doi.org/10.18773/austprescr.2014.050.
39. Wangko S. Rabdomiolisis. Jurnal Biomedik (Jbm). 2014; 5(3): 157–64.
40. Crader MF, Johns T, Arnold JK. Warfarin Drug Interaction. 2022.
41. Solak Y, Siriopol D, Yildiz A, Ilker YM, Ortiz A, Covic A, et al. Colchicine in Renal Medicine : New Virtues of an Ancient Friend. Blood Purifcation. 2017; 43: 125–35. https://doi.org/10.1159/000454669.
42. Chiravuri S, De Jesus O. Pancytopenia. 2021.
43. Dawood AA. Using Remdesivir and Dexamethasone for Treatment of SARS-CoV-2 Shortens the patient’s stay in the Hospital. Asian Journal of Pharmaceutical Research. 2021; 11(2): 138–40. http://dx.doi.org/10.52711/2231-5691.2021.00026.
44. Hosen SM, Saha D, Khanam UH, Barua S, Rashid M, Khan MAU, et al. Evaluation of Drug-Drug Interaction in a Patient Drugs Profile with Multiple Complicacy and Patient Management. Research Journal of Pharmacy and Technology. 2012; 5(6): 813–6. https://www.indianjournals.com/ijor.aspx?target=ijor:rjpt&volume=5&issue=6&article=020.
45. Purnima R, Pankaj T, Rathore M, Vijay V, Pandey SN. Antibiotics Induced Adverse Drug Reaction Monitoring in a Teaching Hospital in Chhattisgarh. Research Journal of Pharmacology and Pharmacodynamics. 2012; 4(1): 13. https://www.indianjournals.com/ijor.aspx?target=ijor:rjppd&volume=4&issue=1&article=004.
46. Alaraj M. Pharmacological repurposed agents for COVID-19. Research Journal of Pharmacy and Technology. 2022; 15(1): 441–6. http://dx.doi.org/10.52711/0974-360X.2022.00073.