Author(s):
Hanaa M. El-Rafie, Hagar R. Maghraby, Amany A. Sleem, Mohamed S. Abdelfattah
Email(s):
hanaelrafie@yahoo.com
DOI:
10.52711/0974-360X.2024.00684
Address:
Hanaa M. El-Rafie1*, Hagar R. Maghraby2, Amany A. Sleem3, Mohamed S. Abdelfattah4
1Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., P.O. 12622 (ID: 60014618), Dokki–Giza (Egypt).
2Chemical Testing Laboratories, General Organization for Export and Import Control, Cargo Village, Cairo Airport, Cairo, (Egypt).
3Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, National Research Centre, 33 El Bohouth St., P.O. 12622 (ID: 60014618), Dokki–Giza (Egypt).
4Natural Products Research Unit, Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795 (Egypt).
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
The vast field of nanotechnology is significantly impacting both the global economy and human lives. Recently, metal nanoparticles have garnered attention as a potentially effective wound healing treatment, and the utilization of plant extracts for the biogenic synthesis of metal nanoparticles is a cost-effective and environmentally sustainable approach. The lack of scientific data to back up the claims made in ancient literature with binnendijkii species prompted the goals of this study. This motivates us to present a green method for synthesizing silver nanoparticles (AgNPs) utilizing hydroethanolic leaf extract from Ficus binnendijkii (FE) at different pHs and durations. The as-synthesized AgNPs and FE were applied separately to cotton fabrics, with or without 1% citric acid (CA) (as a bio-binder), under both normal and washing conditions to produce dressings that enhance wound healing. Quantitative analyses were performed to assess the total amounts of phenolic compounds, flavonoids, tannins, and alkaloids found in the FE, as well as HPLC to identify and quantify the phenolic compounds. All these phytochemicals play key roles in the assembly of AgNPs and wound healing. The biosynthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform spectroscopy (FTIR), transmission electron microscopy (TEM), and X-ray diffraction patterns (XRD). Male albino rats were used in in vivo studies to investigate whether the AgNPs-containing dressing improved wound healing. The experimental results demonstrated the following findings: (i) The AgNPs exhibited a spherical shape, with sizes ranging from 3 to 15 nm and an average diameter of 6.40±2.87 nm. (ii) The most favorable conditions for the synthesis of AgNPs were determined to be a pH of 11 and an incubation time of 30 minutes. (iii) Cotton dressings loaded with a formulation containing AgNPs and 1% binder exhibited remarkable wound healing activity. Consequently, the utilization of this approach proves advantageous in terms of promoting effective wound healing.
Cite this article:
Hanaa M. El-Rafie, Hagar R. Maghraby, Amany A. Sleem, Mohamed S. Abdelfattah. Wound-healing Cotton Dressings containing Greenly Fabricated Silver Nanoparticles from Ficus binnendijkii Hydroethanolic leaves extract. Research Journal of Pharmacy and Technology. 2024; 17(9):4427-6. doi: 10.52711/0974-360X.2024.00684
Cite(Electronic):
Hanaa M. El-Rafie, Hagar R. Maghraby, Amany A. Sleem, Mohamed S. Abdelfattah. Wound-healing Cotton Dressings containing Greenly Fabricated Silver Nanoparticles from Ficus binnendijkii Hydroethanolic leaves extract. Research Journal of Pharmacy and Technology. 2024; 17(9):4427-6. doi: 10.52711/0974-360X.2024.00684 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-45
REFERENCES:
1. Haleem A. Javaid M. Singh RP. Rab S. Suman R. Applications of nanotechnology in medical field: a brief review. Glob Health J. 2023; 7(2): 70-77.https://doi.org/10.1016/j.glohj.2023.02.008
2. Mohammad ZH. Ahmad F. Ibrahim SA. Zaidi S. Application of nanotechnology in different aspects of the food industry. Discov Food. 2022; (2): 12. https://doi.org/10.1007/s44187-022-00013-9
3. Malik S. Muhammad K. Waheed Y. Nanotechnology: A revolution in modern industry. Molecules. 2023; 28(2): 661. https://doi.org/10.3390/molecules28020661
4. Shah MA. Pirzada BM. Price G.Shibiru AL. Qurashi A. Applications of nanotechnology in smart textile industry: A critical review. J Adv Res. 2022; 22(38): 55-75. https://doi.org/10.1016/j.jare.2022.01.008
5. Abd-Elsalam KA. Special issue: Agricultural nanotechnology. Plants. 2024; 13(4): 489. https://doi.org/10.3390/plants13040489
6. Rezaei S, Yazdian-Robati R, Mogharabi-Manzari M, Salehipour M. Editorial: Medical and pharmaceutical applications of nanomaterials: From diagnosis to treatment. Front. Nanotechnol. 2024; 6:1386250. https://doi.org/10.3389/fnano.2024.1386250
7. Maheshwari S, Tiwari RK, Singh L. Green expertise: Synthesis of silver nanoparticles for wound healing application an overview. Res J Pharm Tech. 2021; 14(2): 1149-1154. http://dx.doi.org/10.5958/0974-360X.2021.00206.7
8. Martins JP, Santos HA (Eds.). Nanotechnology for oral drug delivery: From concept to applications, (1stedn). Academic Press, London. 2020. https://doi.org/10.1016/C2018-0-03669-5
9. Mahaparale SP, Kore RS. Silver Nanoparticles: Synthesis, Characterization, Application, Future Outlook. Asian J Pharm Res. 2019; 9(3): 181-189. https://doi.org/10.5958/2231-5691.2019.00029.7
10. Jha S. Rani R. Singh S. Biogenic zinc oxide nanoparticles and their biomedical applications: A review. J InorgOrganometPolym. 2023; 33: 1437–1452. https://doi.org/10.1007/s10904-023-02550-x
11. Galatage ST, Hebalkar AS, Gote RV, Omkar R. Mali, Suresh G. Killedar. Silver Nano Particles by Green Synthesis: An Overview. Res J Pharm Tech. 2020; 13(3): 1503-1510. https://doi.org/10.5958/0974-360X.2020.00274.7
12. Bachhav PA, Shroff RM, Shirkhedkar AA. Silver nanoparticles: A comprehensive review on mechanism, synthesis, and biomedical applications. Asian J Pharm Res. 2020; 10(3): 202-212. https://doi.org/10.5958/2231-5691.2020.00035.0
13. Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, characterization, antibacterial and wound healing efficacy of silver nanoparticles from Azadirachta indica. Front Microbiol. 2021; 12: 611560. https://doi.org/10.3389/fmicb.2021.611560
14. Marathe VS, Nikum AP, Marathe GS, Patil SG. A review on silver nanoparticles. Res J Pharmacol and Pharmacodynamics. 2023; 15(2): 87-5. https://doi.org/10.52711/2321-5836.2023.00017
15. Jamal A, Maqsood A. Review of synthesis of silver nanoparticles from different medicinal plants and their pharmacological activities. Asian J Pharm Tech. 2021; 11(1): 88-93. https://doi.org/10.5958/2231-5713.2021.00015.5
16. Abada E, Mashraqi A, Modafer Y, Al Abboud MA, El-Shabasy A. Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi J Biol Sci. 2024; 31(1): 103877. https://doi.org/10.1016/j.sjbs.2023.103877
17. Yadi M. Mostafavi M. Saleh B. Davaran S. Aliyeva I, Khalilov R. Nikzamir M. Nikzamir M. Akbarzadeh A. Panahi Y. Milani M. Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artif Cells Nanomed Biotechnol. 2018; 46: S336–S343. https://doi.org/10.1080/21691401.2018.1492931
18. Nagle SM, Stevens KA, Wilbraham SC. Wound assessment. [Updated 2023 Jun 26]. In: StatPearls [Internet]. Treasure Island (FL): Stat Pearls Publishing, 2023 Jan- available from: https://www.ncbi.nlm.nih.gov/books/NBK482198/
19. Nqakala ZB. Sibuyi NRS. Fadaka AO. Meyer M. Onani MO. Madiehe AM. Advances in nanotechnology towards development of silver nanoparticle-based wound-healing agents. Int J Mol Sci. 2021; 22(2021): 11272.https://doi.org/10.3390/ijms222011272
20. Remadevi V. Mohan Lathika L. Sasikumar Sujatha A. Sreeharshan S. Ficus extract—A promising agent for antimammary tumorigenesis: A review on current status and future possibilities. Phyther Res. 2019; 33: 1597–1603. https://doi.org/10.1002/ptr.6348
21. Lansky EP. Paavilainen HM. Pawlus AD. Newman RA. Ficus spp. (fig): Ethnobotany and potential as anticancer and anti-inflammatory agents. J Ethnopharmacol. 2008; 119: 195–213. https://doi.org/10.1016/j.jep.2008.06.025
22. Ayoub L. Hassan F. Hamid S. Abdelhamid Z. Souad A. Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation. 2019; 15: 226–232. https://doi.org/10.6026%2F97320630015226
23. Hossain MA. A review on Ficus sycomorus: A potential indigenous medicinal plant in Oman. J King Saud Univ-Sci. 2018; 31(4): 961-965. https://doi.org/10.1016/j.jksus.2018.07.002
24. Singh D. Singh B. Goel RK. Traditional uses, phytochemistry and pharmacology of Ficus religiosa: A review. J Ethnopharmacol. 2011; 134: 565–583.https://doi.org/10.1016/j.jep.2011.01.046
25. Panday DR. Rauniar GP. Effect of root-extracts of Ficus benghalensis (Banyan) in pain in animal models. J Neurosci Rural Pract. 2016; 7(2): 210–215. https://doi.org/10.4103%2F0976-3147.178660
26. Ahmed F. Urooj A. Traditional uses, medicinal properties, and phytopharmacology of Ficus racemosa: A review. Pharm Biol. 2010; 48(6): 672–681. https://doi.org/10.3109/13880200903241861
27. Cruz JMDA, Corrêa RF, Lamarão CV, Kinupp VF, Sanches EA, Campelo PH, Bezerra JA. Ficus spp. fruits: Bioactive compounds and chemical, biological, and pharmacological properties. Food Res Int. 2022; Feb; 152: 110928. https://doi.org/10.1016/j.foodres.2021.110928
28. Imran M. Rasool N. Rizwan K. Zubair M. Riaz M. Zia-Ul-Haq M. Rana UA. Nafady A. Jaafar ZA. Chemical composition and biological studies of Ficus benjamina. Chem Cent. 2014; 8:12. https://doi.org/10.1186%2F1752-153X-8-12
29. Sasidharan SP, Yang X, Arunachalam K. An overview of ethnobotany, phytochemicals, and pharmacological properties of Ficus species. In: Arunachalam K, Yang X, Puthanpura Sasidharan S. (eds) Bioprospecting of tropical medicinal plants. Springer, Cham. 2023. https://doi.org/10.1007/978-3-031-28780-0_18
30. Jacob SJP, Prasad VLS, Sivasankar S, Muralidharan P. Biosynthesis of silver nanoparticles using dried fruit extract of Ficus carica - Screening for its anticancer activity and toxicity in animal models. Food Chem Toxicol. 2017; 109[Pt 2]: 951–956. https://doi.org/10.1016/j.fct.2017.03.066
31. Saware K, Sawle B, Salimath B, Jayanthi K, Abbaraju V. Biosynthesis and characterization of silver nanoparticles using Ficus Benghalensis leaf extract. Int J Res Eng Technol. 2014; 3[5]: 867–874. http://dx.doi.org/10.15623/ijret.2014.0305158
32. Zafar S, Ashraf A, Ashraf MS, Asad F, Perveen S, Zafar A, Shahzadi A. Preparation of eco-friendly antibacterial silver nanoparticles from leaf extract of Ficus Benjamina. Biomed J Sci & Tech Res. 2018; 9[4]: 7260-7264.
33. Kanjikar AP, Hugar AL, Londonkar RL. Characterization of phyto-nanoparticles from Ficus krishnae for their antibacterial and anticancer activities. Drug Dev Ind Pharm. 2018; 44[3]: 377–384. https://doi.org/10.1080/03639045.2017.1386205
34. Marzuk AFT, Adnan H, Hussein NN, Oda AM, Kamil SA, Salah M. Green synthesis of silver nanoparticle by Ficus Cordata leaf extract and study its antibacterial activity. Orient J Chem. 2019; 35[3]: 1195–1200. http://dx.doi.org/10.13005/ojc/350340
35. Singhal A, Singhal N, Bhattacharya A, Gupta A. Synthesis of silver nanoparticles (AgNPs) using Ficus retusa leaf extract for potential application as antibacterial and dye decolourising agents. Inorg Nano-Metal Chem. 2017; 47[11]: 1520–1529. https://doi.org/10.1080/24701556.2017.1357604
36. Guruviah K, Suruthi P, Veerakumar R, Vinoth S, Subbaiya R, Chozhavendhan S. A Review on Metallic Gold and Silver Nanoparticles. Research J. Pharm. and Tech 2019; 12(2): 935-943. http://dx.doi.org/10.5958/0974-360X.2019.00158.6
37. Veneklaas EJ, den Ouden F. Dynamics of non-structural carbohydrates in two Ficus species after transfer to deep shade. Environ Exp Bot. 2005; 54[2]: 148–154. https://doi.org/10.1016/j.envexpbot.2004.06.010
38. El-Rafie HM, Sleem AA. Phytochemical studies of Ficus binnendijkii leaf extracts: Fractionation and bioactivities of its petroleum ether extract. Int J Pharmacogn Phytochem Res. 2016; 8[10]: 1742–1750.
39. Agbor GA, Vinson JA, Donnelly EP. Folin-Ciocalteau reagent for polyphenolic assay. Int J Food Sci Nutr Diet. 2014; 3: 801. http://dx.doi.org/10.19070/2326-3350-1400028
40. Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, Khan IA. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: a comparative study. Evid Based Complement Alternat Med. 2014; 2014: 253875. https://doi.org/10.1155/2014/253875
41. Isnaini I, Oktaviyanti IK, Budiarti LY. Antibacterial and wound healing activity of ethanolic extract Melastomamalabathricum L. Res J Pharm Technol. 2023; 16(5): 2210-4. https://doi.org/10.52711/0974-360X.2023.00363
42. Abd El-Maboud MM, Elhaw MH, Haggag MI, Ewais EA. Phytochemical studies on Lycium schweinfurthiivar. schweinfurthii (Solanaceae) and isolation of five flavonoids from leaves. J Med Plants Stud. 2016; 4[6]: 288–300. http://dx.doi.org/10.15406/ppij.2022.10.00386
43. El-Rafie HM, Abd El-Aziz SM, Zahran MK. Bioactivities of gold and iron oxide nanoparticles biosynthesized from the edible plant Corchorus olitorius. Der Pharm Lett. 2016; 8[19]: 156-164.
44. Chithra P, Sajithlal GB, Chandrakasan G. Influence of aloe vera on the healing of dermal wounds in diabetic rats. J Ethnopharmacol. 1998; 59[3]: 195–201. https://doi.org/10.1016/s0378-8741(97)00124-4
45. G/giorgis SG, Ambikar D, Tsegaw A, Belayneh YM. Wound healing activity of 80% methanolic crude extract and solvent fractions of the leaves of Justicia schimperiana (Hochst. ex Nees) T. Anderson (Acanthaceae) in mice. J Exp Pharmacol. 2022; 14: 167-183. https://doi.org/10.2147/jep.s340177
46. Abdel-Hameed E-SS. Total phenolic contents and free radical scavenging activity of certain Egyptian Ficus species leaf samples. Food Chem. 2009; 114[4]: 1271–1277. https://doi.org/10.1016/j.foodchem.2008.11.005
47. Elhawary SS, Younis IY, El Bishbishy MH, Khattab AR. LC–MS/MS-based chemometric analysis of phytochemical diversity in 13 Ficus spp. (Moraceae): Correlation to their in vitro antimicrobial and in silico quorum sensing inhibitory activities. Ind Crops Prod. 2018; 126: 261–271. https://doi.org/10.1016/j.indcrop.2018.10.017
48. Teixeira DM, Canelas VC, do Canto AM, Teixeira JMG, Dias CB. HPLC-DAD quantification of phenolic compounds contributing to the antioxidant activity of Maclura pomifera, Ficus carica and Ficus elastica extracts. Anal Lett. 2009; 42[18]: 2986–3003. https://doi.org/10.1080/00032710903276646
49. Khan MF, Khan MA. Plant-derived metal nanoparticles (PDMNPs): Synthesis, characterization, and oxidative stress-mediated therapeutic actions. Future Pharmacol. 2023; 3[1]: 252-295. https://doi.org/10.3390/futurepharmacol3010018
50. Bagheri AR, Aramesh N, Hasnain MS, Nayak AK, Varma RS. Greener fabrication of metal nanoparticles using plant materials: A review. Chem Phys Impact. 2023; 7: 100255. https://doi.org/10.1016/j.chphi.2023.100255
51. Ibrenna GM, Silalahi J, Yuandani, Satria D. Wound healing potential of formulated ointment by using virgin coconut oil in combination with Ethanol extract of Artocarpus lakoochaRoxb. leaves. Res J Pharm Technol. 2023; 16(8): 3530-4. https://doi.org/10.52711/0974-360X.2023.00583
52. Manikandan R, Anjali R, Beulaja M, Prabhu NM, Koodalingam A, Saiprasad G, Chitra P, Arumugam M. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem. 2019; 79: 135–141. https://doi.org/10.1016/j.procbio.2019.01.013
53. Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics. 2010; 5: 85–97. https://doi.org/10.1007/s11468-009-9120-4
54. Ansari M, Ahmed S, Abbasi A, Khan MT, Subhan M, Bukhari NA, Hatamleh AA, Abdelsalam NR. Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Sci Rep. 2023; 13(1): 18048. https://doi.org/10.1038/s41598-023-45038-x
55. Elemike EE, Onwudiwe DC, Arijeh O, Nwankwo HU. Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bull Mater Sci. 2017; 40: 129–137. https://doi.org/10.1007/s12034-017-1362-8
56. Sumi Maria B, Devadiga A, Shetty Kodialbail V, Saidutta MB. Synthesis of silver nanoparticles using medicinal Zizyphus xylopyrus bark extract. Appl Nanosci. 2015; 5: 755–762. https://doi.org/10.1007/s13204-014-0372-8
57. AbuDalo MA, Al-Mheidat IR, Al-Shurafat AW, Grinham C, Oyanedel-Craver V. Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. PeerJ. 2019; 7: e6413. https://doi.org/10.7717/peerj.6413
58. Sachin J, Sanyam G, Neetesh J, Tiwari A, Balekar N, Jain DK. Simple evaluation of wound healing activity of polyherbal formulation of roots of Ageratum conyzoides Linn. Asian J. Research Chem 2009; 2(2): 135-138.
59. Cheng J, Zhang B, Zhu W, Zhang C, Qin Y, Ab Me, Akihisa T, Liu W, Feng F, Zhang J. Traditional uses, phytochemistry, and pharmacology of Ficus hispidaL.f.: A review. J Ethnopharmacol. 2019; 248: 112204. https://doi.org/10.1016/j.jep.2019.112204
60. Manjuprasanna VN, Rudresha GV, Urs AP, Gowda MDM, Rajaiah R, Vishwanath BS. Drupin, a cysteine protease from Ficus drupacea latex, accelerates excision wound healing in mice. Intl J Biol Macromol. 2020; 165[Pt A]: 691-700. https://doi.org/10.1016/j.ijbiomac.2020.09.215
61. Hebeish A, Refai R, Zahran MK, Ali A. Easy‐care properties of simultaneously grafted and crosslinked cotton fabrics. J Appl Polym Sci. (1996); 60(12): 2165-2176. https://doi.org/10.1002/%28SICI%291097-4628%2819960620%2960%3A12%3C2165%3A%3AAID-APP14%3E3.0.CO%3B2-6