Author(s): Nurul Hikmah Harun, Nur Syamimi Husna Mohd Khir, Syed Ahmad Tajudin Tuan Johari

Email(s): nurulhikmah@unisza.edu.my

DOI: 10.52711/0974-360X.2024.00680   

Address: Nurul Hikmah Harun1*, Nur Syamimi Husna Mohd Khir1, Syed Ahmad Tajudin Tuan Johari2,3
1School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kampus Gong Badak, Gong Badak, 21300, Kuala Nerus, Terengganu Darul Iman, Malaysia.
2Centre for Research in Infectious Disease and Biotechnology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400 Kuala Terengganu, Terengganu Darul Iman, Malaysia.
3Centralised Lab Management Centre, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu Darul Iman, Malaysia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 9,     Year - 2024


ABSTRACT:
Macrophages are essential components of the innate immune system that assist in treating or preventing immune-related diseases. Recently, synthetic medications are frequently used to address these aberrant disorders but presented several undesirable side effects. Camellia sinensis or also known as tea tree has the potential of becoming an immunomodulatory agent based on the previous researches that had been done. However, there has been no scientific data related to the immunomodulatory and anti-inflammatory activities of the plant on the normal model and lipopolysaccharides (LPS) induced model of RAW264.7 mouse macrophage cell lines. Hence, this in vitro study will determine the immunomodulatory effects of the plant on the innate immune responses of macrophages. Briefly, the effects of the plant extract were conducted after 24 hours of treatment on cytotoxicity and migration activities of normal and LPS-stimulated macrophages by using MTT assay and wound closure method, respectively. The results present that there was no significant difference in viability percentage and morphological changes between the treated cells and untreated cells in both models indicated no cytotoxicity effects. In addition, the results show the presence of migration activities in both models after the treatment with the C. sinensis extract. The rate of migration along with the wound closure percentage of normal model of macrophages had increased significantly in the treatment of C. sinensis extract as compared to the untreated macrophages for normal and LPS-induced macrophages. Overall, the current findings of this research suggested that the C. sinensis aqueous extract was able to induce innate immune responses of normal model and LPS-induced model of the macrophages. Therefore, this plant can be potentially developed in future as immunomodulatory agent to treat various immune-related diseases. Though, further studies were needed for the validation of the findings through various experimental studies in the future.


Cite this article:
Nurul Hikmah Harun, Nur Syamimi Husna Mohd Khir, Syed Ahmad Tajudin Tuan Johari. Immunomodulatory and Anti-inflammatory effects of Camellia sinensis Extract on RAW 264.7 Mouse Macrophage Cell Lines. Research Journal of Pharmacy and Technology. 2024; 17(9):4401-9. doi: 10.52711/0974-360X.2024.00680

Cite(Electronic):
Nurul Hikmah Harun, Nur Syamimi Husna Mohd Khir, Syed Ahmad Tajudin Tuan Johari. Immunomodulatory and Anti-inflammatory effects of Camellia sinensis Extract on RAW 264.7 Mouse Macrophage Cell Lines. Research Journal of Pharmacy and Technology. 2024; 17(9):4401-9. doi: 10.52711/0974-360X.2024.00680   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-41


REFERENCES:
1.    Kaur A. Fang CM. An Overview of the Human Immune System and the Role of Interferon Regulatory Factors (IRFs). Progress in Microbes and Molecular Biology. 2020; 3(1): 1-6. doi: https://doi.org/10.36877/pmmb.a0000129
2.    Marshall JS. Warrington R. Watson W. Kim HL. An Introduction to Immunology and Immunopathology. Allergy, Asthma and Clinical Immunology. 2018; 14(S2): 49. doi: https://doi.org/10.1186/s13223-018-0278-1
3.    Park MH. Lee ED. Chae WJ. Macrophages and Wnts in Tissue Injury and Repair. Cells. 2022; Dec 11(22): 3592. doi: https://doi.org/10.3390/cells11223592
4.    Yuandani Jantan I. Rohani A.S. Sumantri I.B. Immunomodulatory Effects and Mechanisms of Curcuma Species and Their Bioactive Compounds: A Review. Frontiers in Pharmacology. 2021; 12: 643119. doi: https://doi.org/10.3389/fphar.2021.643119
5.    Karimi A. Majlesi M. Rafieian-Kopaei M. Herbal Versus Synthetic Drugs; Beliefs and Facts. Journal of Nephropharmacology. 2015; Jan 4(1): 27-30. doi: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5297475/
6.    Kar M.D. Shivhare R.S. Ugale V.G. Anti-inflammatory Potentials of Some Novel Murrayanine Containing 1,3,4-Oxadiazole derivatives. Asian Journal of Pharmacy and Technology. 2018; 8(1): 47-51. doi: 10.5958/2231-5713.2018.00008.9
7.    Sindhu T.J. Arathi K.N. Akhilesh K.J. Jose A. Binsiya K.P. Blessy T. Elizabeth W. Antiviral Screening of Clerodol Derivatives as COV 2 Main Protease Inhibitor in Novel Corona Virus Disease: In silico Approaches. Asian Journal of Pharmacy and Technology. 2020;  10(2): 60-64.doi:10.5958/2231-5713.2020.00012.4
8.    Samir D. Manel, A, Abir, H. Phytochemical Analysis and Antioxidant Property of Rhizome Extracts Aqueous of Phragmites australis in Alloxan Diabetic Rats.  Asian Journal of Pharmacy and Technology. 2019; 9(4): 249-252. doi: 10.5958/2231-5713.2019.00041.2
9.    Babanrao D.D. Ramrao S.M. Evaluation of In Vivo Analgesic and Anti-Inflammatory Activity of Ethanolic Extract of Medicinal Plant-Lagenaria siceraria. Asian Journal of Pharmacy and Technology. 2019; 9(2): 75-78. doi: 10.5958/2231-5713.2019.00013.8
10.    Iqbal S. Khalid S. Shahid S. Pharmacological Properties of Rosa damascene. Asian Journal of Pharmacy and Technology. 2020; 10(3): 183-186. doi: 10.5958/2231-5713.2020.00031.8
11.    Christy S. Nivedhitha M.S. Antimicrobial Efficacy of Azadirachta indica Against Streptococcus mutans-An In vitro. Study Asian Journal of Pharmacy and Technology. 2019; 9(3): 149-153. doi: 10.5958/2231-5713.2019.00025.4
12.    Aulifa D.L. Sakinah H. Hesti R. Arif B. Antibacterial Effects of Black Mulberry (Morus nigra) Stem Bark Extract on Streptococcus mutans.. Research Journal of Pharmacy and Technology. 2021; 14(8): 4399-4402. Doi: 10.52711/0974-360X.2021.00763
13.    Ali EA. Therapeutic Properties of Medicinal Plants: A Review of Their Immunological Effects (Part 1). Asian Journal of Pharmaceutical Research. 2015; 5(3): 208-216.
14.    Shantilal S. Vaghela J.S. Investigation of Immunomodulatory Activity of Methanolic Extract and Isolated Compound of Pavonia odorata Roots in Mice. Research Journal of Pharmacy and Technology. 2021; 14(7): 3489-3494. Doi: 10.52711/0974-360X.2021.00605
15.    Fatmawati S. Rizky D.L. Riyaniarti E.W. Erryana M. Tri D.W. Muhaimin R.. Fermented Ethanolic Extract of Moringa oleifera leaves with Lactobacillus plantarum FNCC 0137 as Immunomodulators on Salmonella typhi-Infected Mice.  Research Journal of Pharmacy and Technology. 2020; 13(12): 5777-5782. Doi: 10.5958/0974-360X.2020.01007.0
16.    Harun N.H. Mohamad M.F. Zingiber Officinale (Ginger): A Systematic Review and Meta-Analysis on Antimicrobial Activities.  Journal of Applied Pharmaceutical Science, 2023; 13(3): 001-011. Doi: 10.7324/JAPS.2023.8330
17.    Harun N.H. Mohamad M.F. The Immunomodulatory Effects of Zingiber officinale (Ginger): A Systematic Review. Research Journal of Pharmacy and Technology. 2022; 15(8), 3776-3781. Doi: 10.52711/0974-360X.2022.00634   
18.    Harun N.H. Rapeah S.A. Wan Amir W.A. Immunostimulatory Effects of Asiatic Acid and Madecassoside on the Phagocytosis Activities of Macrophages Cell Line (J774A. 1). J Appl Pharm Sci.  2021; 11(11): 104-111. Doi: 10.7324/JAPS.2021.1101114
19.    Ahmad W. Jantan I. Kumolosasi E. Haque M.A. Bukhari S.N.A. Immunomodulatory Effects of Tinospora crispa Extract and Its Major Compounds on the Immune Functions of RAW 264.7 macrophages. International Immunopharmacology. 2018; 60: 141-151. doi: https://doi.org/10.1016/j.intimp.2018.04.046
20.    Noor D.I. Lay, J.S. Sekar, M. Nur N.I.M.R.  Pei T.L. Ten Commonly Available Medicinal Plants in Malaysia with Potential Sun Protection Factor and Antioxidant Properties-A Review. Pharmacognosy Journal. 2022; Mar 14(2): 444-455. Doi: https://www.phcogj.com/article/1786
21.    Zhao T. Li C. Wang S. Song X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules. 2022; 27(12): 3909. Doi: https://doi.org/10.3390/molecules27123909
22.    Li P. Zheng Y. Chen X. Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics. Frontiers in Pharmacology. 2017; 8:460. Doi: https://doi.org/10.3389/fphar.2017.00460
23.    Kim H.J. Joe H.I. Zhang Z. Woo L.S. Lee K.Y. Kook Y.B. An H.J. Anti-inflammatory effect of Acalypha australis L. Via Suppression of NF-κB Signaling in LPS-Stimulated RAW 264.7 Macrophages and LPS-induced Septic Mice. Molecular Immunology. 2020; 119: 123-131. Doi: https://doi:10.1016/j.molimm.2020.01.010
24.    Parthasarathy A. Vijayakumar S. Malaikozhundan B. Thangaraj M.P. Ekambaram P. Murugan T. Vaseeharan B. Chitosan-coated Silver Nanoparticles Promoted Antibacterial, Antibiofilm, Wound-Healing of Murine Macrophages and Antiproliferation of Human Breast Cancer MCF7 cells. Polymer Testing, 2020; 90 :106675. Doi: https://doi:10.1016/j.polymertesting.2020.106675
25.    Suarez-Arnedo A. Figueroa F. Clavijo C. Arbelaez P. Cruz J.C. Munoz-Camargo C. An image J Plugin for the High Throughput Image Analysis of In Vitro Scratch Wound Healing Assays. PloS one. 2020; Jul 15(7), e0232565–e0232565. Doi: https://doi.org/10.1371/journal.pone.0232565
26.    Rachmawati E. Rohman M.S. Sishartami L.W. Sargowo D. Kalsum, U. In Silico Modelling, Regulation of Cell Viability and Anti Atherosclerotic Effect in Macrophage by Decaffeinated Coffee and Green Tea Extract. Pharmacognosy Journal. 2022; 14(1): 46-55. Doi: http://dx.doi.org/10.5530/pj.2022.14.7
27.    Zhao L. Miao Y. Shan B. Zhao C. Peng C. Gong J. Theabrownin Isolated from Pu-Erh Tea Enhances the Innate Immune and Anti-Inflammatory Effects of RAW264. 7 Macrophages via the TLR2/4-Mediated Signaling Pathway. Foods. 2023; 12(7): 1468. Doi: https://doi.org/10.3390/foods12071468
28.    Wang Q. Huang J. Zheng Y. Guan X. Lai C. Gao H. Lin B. Selenium-enriched Oolong Tea (Camellia sinensis) Extract Exerts Anti-inflammatory Potential Via Targeting NF-κB and MAPK Pathways in Macrophages. Food Science and Human Wellness. 2022; 11(3): 635-642. Doi: https://doi.org/10.1016/j.fshw.2021.12.020
29.    Hossen I. Kaiqi Z. Hua W. Junsong X. Mingquan H. Yanping C. Epigallocatechin Gallate (EGCG) Inhibits Lipopolysaccharide‐induced Inflammation in RAW 264.7 Macrophage Cells Via Modulating Nuclear Factor Kappa‐light‐chain Enhancer of Activated B cells (NF‐κ B) Signaling Pathway. Food Science and Nutrition.  2023; 11(8): 4634-4650. Doi: https://doi.org/10.1002/fsn3.3427
30.    Romano M. Uchiyama M.K. Cardoso R.M. Toma S.H. Baptista M.S. Araki K. Nitric Oxide Inhibition of Lipopolysaccharide-stimulated RAW 247.6 Cells by Ibuprofen-conjugated Iron Oxide Nanoparticles. Nanomedicine. 2020; 15(25): 2475-2492. Doi: https://doi.org/10.2217/nnm-2020-0214
31.    Nam H.H. Nan L. Choo B.K. Inhibitory Effects of Camellia japonica on Cell Inflammation and Acute Rat Reflux Esophagitis. Chinese Medicine. 2021; 16: 1-12. Doi: https://link.springer.com/article/10.1186/s13020-020-00411-0
32.    Shedoeva A. Leavesley D. Upton Z. Fan C. Wound Healing and The Use of Medicinal Plants. 2019. Evidence-Based Complementary and Alternative Medicine, 2019; 22: 2019: 2684108. doi: https://doi.org/10.1155/2019/2684108
33.    Albahri G. Badran A. Hijazi A. Daou A. Baydoun E. Nasser M. Merah O. The Therapeutic Wound Healing Bioactivities of Various Medicinal Plants. Life. 2023; 13(2): 317. Doi: https://doi.org/10.3390/life13020317
34.    Pereira A.G. Garcia-Perez P. Cassani L. Chamorro F. Cao H. Barba F.J.  Prieto, MA. Camellia japonica: A Phytochemical Perspective and Current Applications Facing Its Industrial exploitation. Food Chemistry:X. 2022; 13: 100258. Doi: https://doi.org/10.1016/j.fochx.2022.100258
35.    Muthachan T. Tewtrakul S. Anti-inflammatory and Wound Healing Effects of Gel Containing Kaempferia marginata Extract. Journal of Ethnopharmacology. 2019; 240: 111964. Doi: https://doi.org/10.1016/j.jep.2019.111964
36.    Yang K. Gao Z.Y. Li T.Q. Song W. Xiao W. Zheng J. Zou H.Y. Anti-tumor Activity and The Mechanism of a Green Tea (Camellia sinensis) Polysaccharide on Prostate Cancer. International Journal of Biological Macromolecules. 2019; 122: 95-103. Doi: https://doi.org/10.1016/j.ijbiomac.2018.10.101
37.    Chotphruethipong L. Binlateh T. Hutamekalin P. Sukketsiri W. Aluko R.E. Benjakul, S. Hydrolyzed Collagen from Defatted Sea Bass Skin and its Conjugate with Epigallocatechin Gallate: In Vitro Antioxidant, Anti-inflammatory, Wound-healing and Anti-obesity Activities. Food Bioscience. 2021; 43: 101303. Doi: https://doi.org/10.1016/j.fbio.2021.101303

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available