Author(s):
Sameer Ranjan Sahoo, Arun Kumar Pradhan, Utkalika Mallick
Email(s):
arunpradhan@soa.ac.in
DOI:
10.52711/0974-360X.2024.00677
Address:
Sameer Ranjan Sahoo1, Arun Kumar Pradhan1*, Utkalika Mallick1,2
1Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
2Depratment of Health Research, ICMR-Regional Medical Research Centre, Bhubanewar, Odisha, 751014, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
This study aims to elucidate the intricate phenomenon of ultrasound-induced antibiotic transport across bacterial membranes, focusing on the synergistic interplay among sonic oscillation, transient retention, and micropore formation within the plasma membrane. A comprehensive approach was undertaken, involving detailed analysis of E. coli biofilms cultivated for 13 and 24 hours and exposed to distinct ultrasonic frequencies (22 and 33 kHz). Antibiotic diffusion assays were meticulously conducted at 15, 30, 45, and 60 minutes at 37°C. Computational exploration was employed to investigate norfloxacin's binding sites on bacterial gyrase through in-silico methods. The investigation revealed a significant fourfold increase in norfloxacin concentration within biofilms under ultrasound insonation compared to non-insonated samples. Sonic oscillation-induced micropore formation and transient retention facilitated complex exchanges of nutrients, waste, and antibiotics, presenting a potential breakthrough in addressing biofilm infections. Computational analysis further enriched mechanistic understanding by unveiling insightful conformational scores (-7.097 and -7.493 kcal/mol) related to norfloxacin's binding sites on bacterial gyrase. This study underscores the potential of ultrasound-enhanced antibiotic transport as a promising strategy for treating biofilm infections, providing novel insights into antibiotic delivery mechanisms.
Cite this article:
Sameer Ranjan Sahoo, Arun Kumar Pradhan, Utkalika Mallick. A Model of Interpolation of Non-thermal Technique with Antibiotics Ameliorates Diffusion within Biofilm and Prediction of its Binding Site through In-silico Approach. Research Journal of Pharmacy and Technology. 2024; 17(9):4381-8. doi: 10.52711/0974-360X.2024.00677
Cite(Electronic):
Sameer Ranjan Sahoo, Arun Kumar Pradhan, Utkalika Mallick. A Model of Interpolation of Non-thermal Technique with Antibiotics Ameliorates Diffusion within Biofilm and Prediction of its Binding Site through In-silico Approach. Research Journal of Pharmacy and Technology. 2024; 17(9):4381-8. doi: 10.52711/0974-360X.2024.00677 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-38
REFERENCES:
1 Suslick KS, Skrabalak SE. Sonocatalysis In: Ertl, G. Knözinger, H., Schüth, F., Weitkamp, J. Handbook of heterogeneous catalysis,Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2008; 1st ed: 2007–2017.
2 Chapla VK, Patel RC, Paun JS, Parmar RB, Tank HM. Microbubbles – A Promising Ultrasound Tool for Novel Drug Delivery System: A Review. Asian J. Res. Pharm. Sci. 2013; 3(2): 56-65.
3 Nalajala VS, Moholkar VS. Investigations in the physical mechanism of sonocrystallization. Ultrason Sonochem. 2011; 18: 345–355. doi:10.1016/j.ultsonch.2010.06.016
4 Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284: 1318–1322. doi:10.1126/science.284.5418.1318
5 Hisham A. Abbas, Fathy M. Serry, Eman M. EL-Masry. Biofilms: The Microbial Castle of Resistance. Research J. Pharm. and Tech. 2013; 6(1): 01-03.
6 Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chem. 1996; 40: 2517–2522. doi:10.1128/AAC.40.11.2517
7 Lewis K. Riddle of biofilm resistance. Antimicrob Agents Chemother. 2001; 45: 999–1007. doi:10.1128/AAC.45.4.999-1007.2001
8 Nyborg WL. Ultrasonic Microstreaming and Related Phenomena. Br. J. Cancer. 1982; 45(5): 156-160.
9 Elder SA. Cavitation Microstreaming. J. Acoust. Soc. Amer. 1959; 31(1): 54-64.
10 WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; Division of Infectious Diseases at the University of Tübingen: Tübingen, Germany, 2017.
11 Rakesh Patel, Anil Bhandari. Spectrofluorimetric Estimation of Some Fluoroquinolones. Asian J. Pharm. Ana. 2017; 7(4): 235-238. doi: 10.5958/2231-5675.2017.00038.2
12 Ellie JC, Goldstein MD. Norfloxacin, a Fluoroquinolone Antibacterial Agent Classification, Mechanism of Action, and in Vitro Activity. The American Journal of Medicine.1987; 82(6).
13 Khan T, Sankhe K, Suvarna V, Sherje A, Patel K, Dravyakar B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharm. 2018; 103: 923–938.
14 Zweerink MM, Edison A: Inhibition of Micrococcus luteus DNA gyrase by norfloxacin and 10 other quinolone carboxylic acids. Antimicrob Agents Chemother. 1986: 29(4); 598-601. doi: 10.1128/AAC.29.4.598. PMID: 3010848; PMCID: PMC180449.
15 S. Balavivekananthan, T. Francis Xavier, S. R. Senthil Kumar, R. Sabitha. Antibacterial activity of Solanum elaeagnifolium Cav. stem and leaf extract against human pathogenic bacteria. Research J. Pharm. and Tech. 2021; 14(3):1339-1345. doi: 10.5958/0974-360X.2021.00238.9
16 Christensen GD. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol. 1985; 22: 996–1006. doi:10.1128/jcm.22.6.996-1006.1985
17 Anderl JN, Franklin MJ, Stewart PS. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother. 2000; 44: 1818–1824. doi:10.1128/aac.44.7.1818-1824.2000
18 Shravani S. Pawar, Sachin H. Rohane. Review on Discovery Studio: An important Tool for Molecular Docking. Asian J. Research Chem. 2021; 14(1):86-88. doi: 10.5958/0974-4150.2021.00014.6
19 Coba-Males MA, Santamaría-Aguirre J, Alcívar-León CD. In Silico Evaluation of New Fluoroquinolones as Possible Inhibitors of Bacterial Gyrases in Resistant Gram-Negative Pathogens. Chem. Proc. 2022; 8(43): 1-14 (2022). doi:10.3390/ecsoc-25-11753
20 Sindhu. TJ, Arathi KN, Akhila D, Aswathi TA, Noushida M, Midhun M, Sajil S K. Synthesis, Molecular Docking and Antibacterial Studies of Novel Azole derivatives as Enoyl ACP Reductase Inhibitor in Escherichia coli. Asian J. Res. Pharm. Sci. 2019; 9(3): 174-180. doi: 10.5958/2231-5659.2019.00027.4
21 Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. A Publ. Protein Soc. 2018; 27: 14–25.
22 Naresh P, Swastika G, Jagadeesh P. Synthesis, Antimicrobial Evaluation and Molecular Docking Studies of Novel Oxazolidinone-Thiophene Chalcone Hybrid Derivatives. Research J. Pharm. and Tech. 2018; 11(12): 5611-5622. doi: 10.5958/0974-360X.2018.01019.3
23 Peterson RV, Pitt WG. The Effect of Frequency and Power Density on the Ultrasonically Enhanced Killing of Biofilm-Sequestered Escherichia coli. Colloids Surf, B. 2000; 17: 219-227. 10.1016/S0927-7765(99)00117-4.
24 Stewart PS, Grab L, Diemer JA. Analysis of biocide transport limitation in an artificial biofilm system. J Appl Microbiol. 1998; 85: 495–500. doi:10.1046/j.1365-2672.1998.853529.x
25 Anna PN, Pankaj M, Mangesh G. Ultrasound-promoted Green Synthesis and Pharmacological Screening of Some Novel 4-(3, 5-diaryl substituted)-4,5-dihydro-1H-pyrazol-1-yl) Benzene Sulfonamide. Asian J. Research Chem. 2011; 4(11): 1712-1716.
26 Carmen J. An Investigation of the Mechanism of the Action of Ultrasound and Antibiotics on Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis. In Microbiology. Brigham Young University: Provo, UT, 2001.
27 Khoury AE, Lam K, Ellis B, Costerton JW. Prevention and control of bacterial infections associated with medical devices. ASAIO J. 1992; 38: 174–178. doi:10.1097/00002480-199207000-00013
28 Qian Z, Sagers RD, Pitt WG. Investigation of the mechanism of the bioacoustic effect. J Biomed Mater Res. 1999; 44: 198–205.
29 Fux CA, Costerton JW, Stewart PS. Survival strategies of infectious biofilms. Trends Microbiol. 2005; 13: 34–40. doi:10.1016/j.tim.2004.11.010
30 Tachibana K, Uchida T, Ogawa K, Yamashita N, Tamura K. Induction of cell-membrane porosity by ultrasound. Lancet. 1999; 353: 1409-1413. doi:10.1016/S0140-6736(99)01244-1
31 Carmen JC. Ultrasonic-enhanced gentamicin transport through colony biofilms of Pseudomonas aeruginosa and Escherichia coli. J. Infect. Chemother. 2004; 10: 193–199. doi:10.1007/s10156-004-0319-1
32 Divya B, Akshay J, Shraddha D, Parijeeta R, Chetan V, Shyama SK, Mukta A, Nisha A, Mukesh S, Tapan G, Tripathi DK, Ajazuddin, Amit A. Emerging Ultrasound Assisted Extraction (UAE) Techniques as Innovative Green Technologies for the effective extraction of the active phytopharmaceuticals. Research J. Pharm. and Tech. 2015; 8(7): 963-970. doi: 10.5958/0974-360X.2015.00161.4
33 Juffermans LJ, Dijkmans PA, Musters RJ, Visser CA, Kamp O. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am. J. Physiol. Heart Circ. Physiol. 2006; 291: 1595–1601. doi:10.1152/ajpheart.01120.2005
34 Greenleaf WJ, Bolander ME, Sarkar G, Goldring MB, Greenleaf JF. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound Med. Biol. 1998; 24: 587–595. doi:10.1016/s0301-5629(98)00003-9
35 Pankaj PP, Dipti GP. Acoustic Mediated Drug Delivery System. Res. J. Pharm. Dosage Form. and Tech. 2016; 8(1): 55-65. doi: 10.5958/0975-4377.2016.00008.2
36 Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum. Gene Ther. 1996; 7: 1339–1346 doi:10.1089/hum.1996.7.11-1339
37 Lawrie A. Ultrasound enhances reporter gene expression after transfection of vascular cells in vitro. Circulation. 1999; 99: 2617–2620. doi:10.1161/01.cir.99.20.2617
38 Qian Z, Sagers RD, Pitt WG. The effect of ultrasonic frequency upon enhanced killing of P. aeruginosa biofilms. Ann Biomed Eng. 1997; 25: 69–76.
39 Stewart PS. Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1998; 38: 1052–1058. doi:10.1128/aac.38.5.1052
40 Carmen JC. Treatment of biofilm infections on implants with low-frequency ultrasound and antibiotics. Am. J. Infect. Control. 2005; 33: 78–82. doi:10.1016/j.ajic.2004.08.002
41 Anwar H, Strap JL, Costerton JW. Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob. Agents Chemother. 1992; 36: 1347–1351. doi:10.1128/aac.36.7.1347
42 Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol. 2002; 184: 1140–1154. doi:10.1128/jb.184.4.1140-1154.2002
43 Schoeffler AJ, Berger JM. DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys.2008; 41: 41–101.
44 Roca J, Wang JC. DNA transport by a type II DNA topoisomerase: Evidence in favor of a two-gate mechanism. Cell. 1994; 77: 609–616.
45 Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS. Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother. 2003; 47: 317–23. doi:10.1128/AAC.47.1.317-323.2003