Author(s): Deasy Ovi Harsachatri, Dian Nugrahenny, Setyawati Soeharto, Nur Permatasari

Email(s): permatasarirazaq.fk@ub.ac.id

DOI: 10.52711/0974-360X.2024.00676   

Address: Deasy Ovi Harsachatri1,2, Dian Nugrahenny3, Setyawati Soeharto3, Nur Permatasari3*
1Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia 65145.
2Study Program of Blood Bank Technology, Kartini Health Academy, Batam, Riau Islands, Indonesia 29483.
3Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia 65145.
*Corresponding Author

Published In:   Volume - 17,      Issue - 9,     Year - 2024


ABSTRACT:
Around 50% of women over 50 with menopause show osteoporosis symptoms, increasing fracture risk. Estrogen deficiency from menopause affects bone remodeling. Groundcherry (Physalis minima L.) has phytoestrogens. We studied groundcherry stem water extract (GSWE) on femur osteoblasts, osteoclasts, and malondialdehyde (MDA) in ovariectomized rats. Rats were grouped: sham-operated, 5-week ovariectomized, 9-week ovariectomized, and three GSWE-treated ovariectomized groups (500, 1500, and 2500mg/kgBW for four weeks). Hematoxylin-eosin staining quantified osteoblast and osteoclast numbers (1000x magnification) in right femur bones. Left femur bones were powdered for MDA analysis via thiobarbituric acid reactive substances (TBARS) test. For osteoblasts, 5-week (21.25±0.957) and 9-week ovariectomized rats (22.75±1.708) had reduced (p<0.01) osteoblast numbers compared to sham (33.75±2.754). GSWE-treated ovariectomized rats at 500 (46.00±1.414) and 1500 mg/kg BW (56.25±6.701) showed increased (p<0.0001) osteoblast numbers, but the 2500 mg/kg BW group had fewer osteoblast numbers (25.50±1.291), similar to the level seen in untreated ovariectomized rats (p>0.05). For osteoclasts, 5-week (25.00±0.816) and 9-week ovariectomized rats (29.50±1.732) had more (p<0.0001) osteoclast numbers compared to sham (17.75±1.893). Conversely, GSWE-treated ovariectomized rats showed fewer (p<0.01) osteoclast numbers at all doses than untreated ovariectomized rats. A significant negative correlation between GSWE doses and osteoclast numbers was observed (r=-0.595; p=0.015). MDA levels were higher (p<0.0001) in 9-week ovariectomized rats (0.115±0.020) than in sham (0.017±0.014). GSWE-treated ovariectomized rats had lower (p<0.0001) MDA levels at all doses than untreated ovariectomized rats. A negative correlation between GSWE doses and MDA levels was evident (r=-0.611; p=0.012). MDA levels correlated negatively with osteoblast numbers (r=-0.577; p=0.019) and positively with osteoclasts (r=0.790; p<0.0001). In conclusion, GSWE could potentially enhance bone health by elevating osteoblast numbers, reducing osteoclast numbers, and lowering MDA levels. These findings suggest its potential as a natural intervention for addressing menopause-related bone issues. Further research can explore its applications.


Cite this article:
Deasy Ovi Harsachatri, Dian Nugrahenny, Setyawati Soeharto, Nur Permatasari. Potential Benefits of Physalis minima Stem Water Extract on Bone Health in Ovariectomized Rats: Osteoblast, Osteoclast, and Malondialdehyde Modulation. Research Journal of Pharmacy and Technology. 2024; 17(9):4373-0. doi: 10.52711/0974-360X.2024.00676

Cite(Electronic):
Deasy Ovi Harsachatri, Dian Nugrahenny, Setyawati Soeharto, Nur Permatasari. Potential Benefits of Physalis minima Stem Water Extract on Bone Health in Ovariectomized Rats: Osteoblast, Osteoclast, and Malondialdehyde Modulation. Research Journal of Pharmacy and Technology. 2024; 17(9):4373-0. doi: 10.52711/0974-360X.2024.00676   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-37


REFERENCES:
1.    Tanbo TG, Fedorcsak PZ. Can time to menopause be predicted? Acta Obstet Gynecol Scand. 2021; 100(11): 1961-1968. doi:10.1111/aogs.14253
2.    Maheshwari P, Deepika B, Shanmugarajan TS. A study on assessment of quality of life in post menopausal women. Res J Pharm Technol. 2017; 10(1): 15-17. doi:10.5958/0974-360X.2017.00004.X
3.    Sakat BT, Sakhare RB, Suryvanshi UC, Kore PS, Mohite SK, Magdum CS. Osteoporosis: The Brittle Bone. Asian J Pharm Res. 2018; 8(1): 39. doi:10.5958/2231-5691.2018.00008.4
4.    Liu J, Kim EK, Ni A, et al. Multiscale characterization of ovariectomized rat femur. J Biomech. 2021; 122: 110462. doi:10.1016/j.jbiomech.2021.110462
5.    Gupta S, Shaikh AM, Mohanty B, Chaudhari P, Parab PB, Apte KG. Evaluation of antiosteoporotic potential of sesbania grandiflora linn. Aqueous fraction in ovariectomised rats. Res J Pharm Technol. 2020; 13(4): 1804-1812. doi:10.5958/0974-360X.2020.00325.X
6.    Cheng CH, Chen LR, Chen KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci. 2022; 23(3). doi:10.3390/ijms23031376
7.    Ramachandran V, Nanjundan P, Jasti T, Elumalai M. Comparative effects of venlafaxine and alendronate on biochemical, bone mechanical and anti-inflammatory properties in ovariectomized rats. Res J Pharm Technol. 2021; 14(7): 3553-3558. doi:10.52711/0974-360X.2021.00615
8.    Bonaccorsi G, Piva I, Greco P, Cervellati C. Oxidative stress as a possible pathogenic cofactor of post-menopausal osteoporosis: Existing evidence in support of the axis oestrogen deficiency-redox imbalance-bone loss. Indian J Med Res. 2018; 147(April): 341-351. doi:10.4103/ijmr.IJMR_524_18
9.    Mohamad N-V, Ima-Nirwana S, Chin K-Y. Are Oxidative Stress and Inflammation Mediators of Bone Loss Due to Estrogen Deficiency? A Review of Current Evidence. Endocrine, Metab Immune Disord- Drug Targets. 2020; 20(9): 1478-1487. doi:10.2174/1871530320666200604160614
10.    Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants. 2023; 12(2): 373. doi:10.3390/antiox12020373
11.    Pinkerton JA V., Aguirre FS, Blake J, et al. The 2017 hormone therapy position statement of the North American Menopause Society. Menopause. 2017; 24(7): 728-753. doi:10.1097/GME.0000000000000921
12.    Pinkerton J V. Hormone Therapy for Postmenopausal Women. N Engl J Med. 2020; 382(5): 446-455. doi:10.1056/nejmcp1714787
13.    Mehta J, Kling JM, Manson JAE. Risks, Benefits, and Treatment Modalities of Menopausal Hormone Therapy: Current Concepts. Front Endocrinol (Lausanne). 2021; 12. doi:10.3389/fendo.2021.564781
14.    Banita R, Priyanka K. Oral contraceptive use and fracture risk in women - A systemic review. Asian J Nurs Educ Res. 2021; 11(2): 263-266. doi:10.5958/2349-2996.2021.00063.X
15.    Rossouw JE, Manson JE, Kaunitz AM, Anderson GL. Lessons learned from thewomen’s health initiative trials of menopausal hormone therapy. Obstet Gynecol. 2013; 121(1): 172-176. doi:10.1097/AOG.0b013e31827a08c8
16.    Rajput V. Menopause and alternative therapy. Asian J Nurs Educ Res. 2012; 2(3): 158-159. https://ajner.com/HTMLPaper.aspx?Journal=Asian+Journal+of+Nursing+Education+and+Research%3BPID%3D2012-2-3-15. Accessed September 2, 2023.
17.    Das A, Edwin AR, Krushnakeerthana R, Bindhu J. Comparative analysis of bioactive compounds and anticancerous activities in leaf and stem extract of Physalis minima. J Nat Remedies. 2020; 20(1): 42-52. doi:10.18311/jnr/2020/24166
18.    Nurhaslina CR, Mealianny H, Mustapa AN, Mohd Azizi CY. Total phenolic content, flavonoid concentration and antioxidant activity of indigenous herbs, Physalis minima linn. In: Journal of Physics: Conference Series. Vol 1349. IOP Publishing. 2019: 12088. doi:10.1088/1742-6596/1349/1/012088
19.    Singh S, Prakash P. Evaluation of Antioxidant Activity of Physalis Minima. Chem Sci Trans. 2014; 800(3): 1179-1185. doi:10.7598/cst2014.800
20.    Banothu V, Adepally U, Lingam J. In Vitro Total Phenolics, Flavonoids Contents, Antioxidant and Antimicrobial Activites of Various Solvent Extracts from the Medicinal Plant Physalis minima Linn. Int J Pharm Pharm Sci. 2017; 9(3): 192. doi:10.22159/ijpps.2017v9i3.16635
21.    Nurfitria S, Permatasari N, Ratnawati R. Evaluation Anxiolytic Effect of Methanol Extract of Ceplukan Leaves (Physalis minima L.) in the Elevated Plus Maze Test through IL-6 Level Changes in Ovariectomized Rats. J Trop Life Sci. 2015; 5(1): 8-13. doi:10.11594/jtls.05.01.02
22.    Lestari B, Permatasari N, Rohman MS. Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF- α in Ovariectomized Rats. Adv Pharmacol Sci. 2016; 2016. doi:10.1155/2016/2428052
23.    Budiatin AS, Gani MA, Samirah, et al. Bovine Hydroxyapatite-Based Bone Scaffold with Gentamicin Accelerates Vascularization and Remodeling of Bone Defect. Int J Biomater. 2021; 2021. doi:10.1155/2021/5560891
24.    Wu Z, Weng S, Yan D, et al. Administration of cinnamaldehyde promotes osteogenesis in ovariectomized rats and differentiation of osteoblast in vitro. J Pharmacol Sci. 2018; 138(1): 63-70. doi:10.1016/j.jphs.2018.09.002
25.    Zhang Y Bin, Zhong ZM, Hou G, Jiang H, Chen JT. Involvement of oxidative stress in age-related bone loss. J Surg Res. 2011; 169(1). doi:10.1016/j.jss.2011.02.033
26.    Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther. 2023; 244: 108383. doi:10.1016/j.pharmthera.2023.108383
27.    Cheng CH, Chen LR, Chen KH. Osteoporosis Due to Hormone Imbalance: An Overview of the Effects of Estrogen Deficiency and Glucocorticoid Overuse on Bone Turnover. Int J Mol Sci. 2022; 23(3): 1376. doi:10.3390/ijms23031376
28.    Emmanuelle NE, Marie-Cécile V, Florence T, et al. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int J Mol Sci. 2021; 22(4): 1568. doi:10.3390/IJMS22041568
29.    Chitra V, Mohammed Anwar Ali M. Animal models for osteoporosis-a review. Res J Pharm Technol. 2020; 13(3): 1543-1548. doi:10.5958/0974-360X.2020.00280.2
30.    Lei Z, Xiaoying Z, Xingguo L. Ovariectomy-associated changes in bone mineral density and bone marrow haematopoiesis in rats. Int J Exp Pathol. 2009; 90(5): 512-519. doi:10.1111/j.1365-2613.2009.00661.x
31.    Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016;87:130-135. doi:10.1016/j.bone.2016.03.016
32.    Eastell R, O’Neill TW, Hofbauer LC, et al. Postmenopausal osteoporosis. Nat Rev Dis Prim. 2016; 2(1): 1-16. doi:10.1038/nrdp.2016.69
33.    Kim TH, Park EK, Huh M Il, Kim HK, Kim SY, Lee SH. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss. Evidence-based Complement Altern Med. 2016; 2016. doi:10.1155/2016/3284704
34.    Locatelli V, Bianchi VE. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int J Endocrinol. 2014; 2014. doi:10.1155/2014/235060
35.    Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005; 208(1): 207-227. doi:10.1111/j.0105-2896.2005.00334.x
36.    Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne). 2019; 10(JAN): 433707. doi:10.3389/fendo.2018.00788
37.    Polat B, Halici Z, Cadirci E, et al. The effect of alpha-lipoic acid in ovariectomy and inflammation-mediated osteoporosis on the skeletal status of rat bone. Eur J Pharmacol. 2013; 718(1-3): 469-474. doi:10.1016/j.ejphar.2013.07.033
38.    Krum SA, Chang J, Miranda-Carboni G, Wang CY. Novel functions for NFκB: inhibition of bone formation. Nat Rev Rheumatol. 2010; 6(10): 607-611. doi:10.1038/NRRHEUM.2010.133
39.    Radhakrishna B, Ashok M, Harish P., Veera Jyothsna M, Shivalinge Gowda K. Current and Future Trends of Drugs Used in Osteoporosis. Res J Pharmacol Pharmacodyn. 2011; 3(6): 329-333. https://rjppd.org/HTMLPaper.aspx?Journal=Research Journal of Pharmacology and Pharmacodynamics;PID=2011-3-6-19. Accessed September 2, 2023.
40.    Permatasari N, Nurdiana N, Karyono S. Efek non genomik dan genomik ekstrak daun ceplukan (Physalis minima L.) pada kultur sel endotel manusia (HUVECs). J Ilmu-Ilmu Hayati (Life Sci. 2010; 22: 14-19.
41.    Kuiper GGJM, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 1998; 139(10): 4252-4263. doi:10.1210/endo.139.10.6216
42.    Hedelin M, Bãlter KA, Chang ET, et al. Dietary intake of phytoestrogens, estrogen receptor-beta polymorphisms and the risk of prostate cancer. Prostate. 2006; 66(14): 1512-1520. doi:10.1002/pros.20487
43.    Monroe DG, Secreto FJ, Spelsberg TC. Overview of estrogen action in osteoblasts: Role of the ligand, the receptor, and the co-regulators. J Musculoskelet Neuronal Interact. 2003; 3(4): 357-362. https://pubmed.ncbi.nlm.nih.gov/15758323/. Accessed August 12, 2023.
44.    Riggs BL. The mechanisms of estrogen regulation of bone resorption. J Clin Invest. 2000; 106(10): 1203. doi:10.1172/JCI11468
45.    Singer FR, Eyre DR. Using biochemical markers of bone turnover in clinical practice. Cleve Clin J Med. 2008; 75(10): 739-750. doi:10.3949/ccjm.75.10.739
46.    Setchell KDR, Lydeking-Olsen E. Dietary phytoestrogens and their effect on bone: Evidence from in vitro and in vivo, human observational, and dietary intervention studies. Am J Clin Nutr. 2003; 78(3 SUPPL.): 593S-609S. doi:10.1093/ajcn/78.3.593s
47.    Zallone A. Direct and indirect estrogen actions on osteoblasts and osteoclasts. Ann N Y Acad Sci. 2006; 1068(1): 173-179. doi:10.1196/annals.1346.019
48.    Karieb S, Fox SW. Phytoestrogens directly inhibit TNF-α-induced bone resorption in RAW264.7 cells by suppressing c-fos-induced NFATc1 expression. J Cell Biochem. 2011; 112(2): 476-487. doi:10.1002/jcb.22935
49.    Yamaguchi M, Weitzmann MN. Quercetin, a potent suppressor of NF-κB and Smad activation in osteoblasts. Int J Mol Med. 2011; 28(4): 521-525. doi:10.3892/ijmm.2011.749
50.    Muthusami S, Ramachandran I, Muthusamy B, et al. Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta. 2005; 360(1-2): 81-86. doi:10.1016/j.cccn.2005.04.014
51.    He XF, Zhang L, Zhang CH, et al. Berberine alleviates oxidative stress in rats with osteoporosis through receptor activator of NF-kB/receptor activator of NF-kB ligand/osteoprotegerin (RANK/RANKL/OPG) pathway. Bosn J Basic Med Sci. 2017; 17(4): 295-301. doi:10.17305/bjbms.2017.2596
52.    S.A. Sheweita, K.I. Khoshhal. Calcium Metabolism and Oxidative Stress in Bone Fractures: Role of Antioxidants. Curr Drug Metab. 2007; 8(5): 519-525. doi:10.2174/138920007780866852
53.    Grassi F, Tell G, Robbie-Ryan M, et al. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proc Natl Acad Sci U S A. 2007; 104(38): 15087-15092. doi:10.1073/pnas.0703610104
54.    Vaishali M. Antioxidants in Health and Disease. Res J Pharm Technol. 2014; 7(4): 489-493. doi:10.1016/B978-0-12-391884-0.00018-4
55.    Karpagasundari C, Kulothungan S. Free radical scavenging activity of Physalis minima Linn. leaf extract (PMLE). J Med Plants Stud. 2014; 2(4): 59-64.
56.    Gupta KA, KP SG, RN U, R N, S S. In-vitro Antioxidant Activity of Aqueous Extract of Physalis minima Linn. Res J Pharmacol Pharmacodyn. 2010; 2(5): 332-334. https://rjppd.org/HTMLPaper.aspx?Journal=Research Journal of Pharmacology and Pharmacodynamics;PID=2010-2-5-15. Accessed September 2, 2023.
57.    Nugrahenny D, Soeharto S, Permatasari N, et al. Physalis Angulata Leaf Extract Protects Against Oxidative Stress and Antiangiogenic Factor in LNAME-Induced Preeclampsia Rats. Int J Pharm Res. 2021; 13(01): 5092-5102. doi:10.31838/ijpr/2021.13.01.577
58.    Nugrahenny D, Rudijanto A, Permatasari N, et al. Physalis angulata leaf extract ameliorates L-N G-nitroarginine methyl ester (L-NAME)-induced preeclampsia symptoms in rats through improved endothelial progenitor cells and endothelial cells due to reduced antiangiogenic factor and oxidative stress. F1000Research. 2022; 11: 780. doi:10.12688/f1000research.123006.1
59.    Nugrahenny D, Permatasari N, Soeharto S, et al. Physalis angulata Leaf Ethanol Extract Reduces Oxidative Stress and Improves Endothelial Progenitor Cells in L-NAME-Induced Hypertensive Rats. HAYATI J Biosci. 2023; 30(1): 81-87. doi:10.4308/hjb.30.1.81-87
60.    Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: Implications for drug discovery. Comp Med. 2011; 61(1): 76-85. /pmc/articles/PMC3060425/. Accessed August 12, 2023.
61.    Jilka RL. The relevance of mouse models for investigating age-related bone loss in humans. Journals Gerontol - Ser A Biol Sci Med Sci. 2013; 68(10): 1209-1217. doi:10.1093/gerona/glt046

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available