Author(s):
Ramya Ravichandar, Anitha Elango
Email(s):
dr.anishan@gmail.com
DOI:
10.52711/0974-360X.2024.00642
Address:
Ramya Ravichandar1, Anitha Elango2*
1Associate Professor, Department of Pharmacology, Tagore Medical College, Chennai.
2Associate Professor, Department of Pharmacology, Panimalar Medical College Hospital and Research Institute, Varadharajapuram, Poonamallee, Chennai.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
The aim of this study is to evaluate the in vitro cytotoxic activity of newer antidiabetic drug-Imeglimin by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test on breast cancer cell lines. T47D and MDA-MB-231 breast cancer cell lines were obtained from the NCCS, Pune. Cells (1 × 105/well) were plated in 0.2 ml of medium/well in 96-well plates and were incubated at 5% CO2 for 72 h. Then, various concentrations of the samples were added in 0.1% DMSO for 48h at 5% CO2 incubator. 20µl/well MTT reagent was added after removal of the sample solution and the viable cells were determined by the absorbance at 540nm using UV (Ultra-Violet)-spectrophotometer. The images of the cell viability were viewed under Inverted microscope 40X. Half maximal Inhibitory Concentration (IC50) value was determined graphically. IC50 value of Imeglimin on T47D cells was established at 50µg and that of MDA-MB-231 cells was found to be at 87.5µg respectively. The results revealed that the Imeglimin exerts cytotoxic effect on both the breast cancer cell lines. Its effect on T47D cell line is more when compared to MDA-MB-231 cell line. Hence it may serve as a newer and cost effective treatment strategy for breast cancer patients.
Cite this article:
Ramya Ravichandar, Anitha Elango. Cytotoxic effect of Imeglimin on T47D and MDA-MB-231 cell Lines of Human Breast Cancer – An In-vitro study. Research Journal of Pharmacy and Technology. 2024; 17(9):4149-3. doi: 10.52711/0974-360X.2024.00642
Cite(Electronic):
Ramya Ravichandar, Anitha Elango. Cytotoxic effect of Imeglimin on T47D and MDA-MB-231 cell Lines of Human Breast Cancer – An In-vitro study. Research Journal of Pharmacy and Technology. 2024; 17(9):4149-3. doi: 10.52711/0974-360X.2024.00642 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-3
REFERENCES:
1. Divina E. Erlina L. Istiadi KA. Putri ES. Fadilah F. QSAR and Anticancer effect of Alkyl salicylate on Breast cancer T47D Cells Lines. Research Journal of Pharmacy and Technology. 2022; 15(10): 4607-13. doi.org/10.52711/0974-360X.2022.00773
2. Dange VN. Shid SJ. Magdum CS. Mohite SK. A review on breast cancer: an overview. Asian Journal of Pharmaceutical Research. 2017; 7(1): 49-51. doi.org/10.5958/2231-5691.2017.00008.9
3. Karale PA. Karale MA. Utikar MC. Advanced molecular targeted therapy in breast cancer. Research Journal of Pharmacology and Pharmacodynamics. 2018; 10(1): 29-37. doi.org/10.5958/2321-5836.2018.00006.X
4. Ahirwar B. Ahirwar D. In vivo and in vitro investigation of cytotoxic and antitumor activities of polyphenolic leaf extract of Hibiscus sabdariffa against breast cancer cell lines.Research Journal of Pharmacy and Technology. 2020; 13(2): 615-20. doi.org/10.5958/0974-360X.2020.00116.X
5. Gavini V. Murthy MS. Kumar PK. Formulation and Invitro Evaluation of Nanoparticulate Drug Delivery System Loaded With 5-Fluorouracil. Research Journal of Pharmaceutical Dosage Forms and Technology. 2014; 6(4): 243-8.
6. Sanganna B. Kulkarni AR. Antioxidant and Anti-colon cancer activity of fruit peel of Citrus reticulate essential oil on HT-29 cell line. Research Journal of Pharmacy and Technology. 2013; 6(2): 216-9.
7. Gonzalez-Angulo AM. Timms KM. Liu S. Chen H. Litton JK. Potter J. Lanchbury JS. Stemke-Hale K. Hennessy BT. Arun BK. Hortobagyi GN. Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clinical Cancer Research. 2011; 17(5): 1082-9. doi.org/10.1158/1078-0432.CCR-10-2560
8. O'Toole SA. Beith JM. Millar EK. West R. McLean A. Cazet A. Swarbrick A. Oakes SR. Therapeutic targets in triple negative breast cancer. Journal of clinical pathology. 2013; 66(6): 530-42. doi.org/10.1136/jclinpath-2012-201361
9. Penault-Llorca F. Viale G. Pathological and molecular diagnosis of triple-negative breast cancer: a clinical perspective. Annals of Oncology. 2012; 23: vi19-22. doi.org/10.1093/annonc/mds190
10. Iwamoto T. Booser D. Valero V. Murray JL. Koenig K. Esteva FJ. Ueno NT. Zhang J. Shi W. Qi Y. Matsuoka J. Estrogen receptor (ER) mRNA and ER-related gene expression in breast cancers that are 1% to 10% ER-positive by immunohistochemistry. J Clin Oncol. 2012; 30(7): 729-34. doi.org/10.1200/JCO.2011.38.9619
11. Schettini F. Buono G. Trivedi MV. De Placido S. Arpino G. Giuliano M. PI3K/mTOR inhibitors in the treatment of luminal breast cancer. Why, when and to whom. Breast Care. 2017; 12(5): 290-4.doi.org/10.1159/000481657
12. Chen K. Zhang J. Beeraka NM. Tang C. Babayeva YV. Sinelnikov MY. Zhang X. Zhang J. Liu J. Reshetov IV. Sukocheva OA. Advances in the prevention and treatment of obesity-driven effects in breast cancers. Frontiers in Oncology. 2022; 12: 820968.doi.org/10.3389/fonc.2022.820968
13. Irham LM. Nuryana Z. Perwitasari DA. Nuari YR. Sarasmita MA. Adikusuma W. Dania H. Maliza R. Cheung R. Worldwide publication trends of drug repurposing and drug repositioning in the science of medicine (2003-2022). Research Journal of Pharmacy and Technology. 2023; 16(3): 1333-41. doi.org/10.52711/0974-360X.2023.00219
14. Orecchioni S. Reggiani F. Talarico G. Mancuso P. Calleri A. Gregato G. Labanca V. Noonan DM. Dallaglio K. Albini A. Bertolini F. The biguanides metformin and phenformin inhibit angiogenesis, local and metastatic growth of breast cancer by targeting both neoplastic and microenvironment cells. International Journal of Cancer. 2015; 136(6): E534-44. doi.org/10.1002/ijc.29193
15. Saraei P. Asadi I. Kakar MA. Moradi-Kor N. The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Management and Research. 2019; Apr 17: 3295-313.
16. Zhang HH. Guo XL. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemotherapy and Pharmacology. 2016; Jul; 78: 13-26. doi.org/10.1007/s00280-016-3037-3
17. Yuan F. Cheng C. Xiao F. Liu H. Cao S. Zhou G. Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. Life Sciences. 2020; Feb 15; 243: 117276. doi.org/10.1016/j.lfs.2020.117276
18. Lamb YN. Imeglimin hydrochloride: first approval. Drugs. 2021; Sep; 81(14): 1683-90. doi.org/10.1007/s40265-021-01589-9
19. Pacini G. Mari A. Fouqueray P. Bolze S. Roden M. Imeglimin increases glucose‐dependent insulin secretion and improves β‐cell function in patients with type 2 diabetes. Diabetes, Obesity and Metabolism. 2015; 17(6): 541-5. doi.org/10.1111/dom.12452
20. Fouqueray P. Leverve X. Fontaine E. Baquié M. Wollheim C. Lebovitz H. Bozec S. Imeglimin-a new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011; 2(4): 126. doi.org/10.4172/2155-6156.1000126
21. Perry RJ. Cardone RL. Petersen MC. Zhang D. Fouqueray P. Hallakou-Bozec S. Bolze S. Shulman GI. Petersen KF. Kibbey RG. Imeglimin lowers glucose primarily by amplifying glucose-stimulated insulin secretion in high-fat-fed rodents. American Journal of Physiology-Endocrinology and Metabolism. 2016; 311(2): E461-70. doi.org/10.1152/ajpendo.00009.2016
22. Vial G. Chauvin MA. Bendridi N. Durand A. Meugnier E. Madec AM. Bernoud-Hubac N. Pais de Barros JP. Fontaine É. Acquaviva C. Hallakou-Bozec S. Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes. 2015; Jun 1; 64(6): 2254-64. doi.org/10.2337/db14-1220
23. Hallakou‐Bozec S. Kergoat M. Moller DE. Bolze S. Imeglimin preserves islet β‐cell mass in type 2 diabetic ZDF rats. Endocrinology, Diabetes And Metabolism. 2021; 4(2):e00193.doi.org/10.1002/edm2.193
24. Antony J. Debroy S. Manisha C. Thomas P. Jeyarani V. Choephel T. In-vitro cell line Models and Assay methods to study the Anti-diabetic Activity. Research Journal of Pharmacy and Technology. 2019;12(5):2200-6.doi.org/10.5958/0974-360X.2019.00367.6
25. Hozumi K. Sugawara K. Ishihara T. Ishihara N. Ogawa W. Effects of imeglimin on mitochondrial function, AMPK activity, and gene expression in hepatocytes. Scientific Reports. 2023 Jan 13;13(1):746. doi.org/10.1038/s41598-023-27689-y
26. Yu S. Kim T. Yoo KH. Kang K. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Biochemical and Biophysical Research Communications. 2017; 486(3): 752-8. doi.org/10.1016/j.bbrc.2017.03.114
27. Jayashree V. Velraj M. Breast Cancer and various Prognostic Biomarkers for the diagnosis of the disease: A Review. Research Journal of Pharmacy and Technology. 2017; 10(9): 3211-6. doi.org/10.5958/0974-360X.2017.00570.4
28. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods. 1983; 65: 55-63. doi.org/ 10.1016/0022-1759(83)90303-4
29. Muralidharan K. Kumaravelu P.David DC. Cytotoxic effect of ethanolic extracts of Andrographis echioides in human colon cancer cell lines via apoptosis. Research Journal of Pharmacy and Technology. 2020; 13(2): 871-6. doi.org/10.5958/0974-360X.2020.00165.1
30. Tijeras-Raballand A. Martinet M. Paradis V. Bizzari JP. Janin E. Raymond E. Imeglimin alone or in combination with sorafenib showed potent anti-tumor effect in human hepatocellular carcinoma: A new kid on the block for HCC treatment. Cancer Research. 2020; 80(16_Supplement): 5312. doi.org/10.1158/1538-7445.AM2020-5312
31. Aljofan M. Riethmacher D. Anticancer activity of metformin: a systematic review of the literature. Future Science OA. 2019; Aug 22; 5(8): FSO410.doi.org/10.2144/fsoa-2019-0053
32. Checkley LA. Rudolph MC. Wellberg EA. Giles ED. Wahdan-Alaswad RS. Houck JA . Edgerton SM. Thor AD. Schedin P. Anderson SM. MacLean PS. Metformin accumulation correlates with organic cation transporter 2 protein expression and predicts mammary tumor regression in vivo. Cancer Prevention Research. 2017; 10(3): 198-207. doi.org/10.1158/1940-6207.CAPR-16-0211-T
33. Zakikhani M. Dowling R. Fantus IG. Sonenberg N. Pollak M. Metformin is an AMP kinase–dependent growth inhibitor for breast cancer cells. Cancer Research. 2006; 66(21): 10269-73. doi.org/10.1158/0008-5472.CAN-06-1500
34. Zhang F. Han S. Song W. Anticancer effects of metformin in experimental animal models of different types of cancer: a systematic review and meta-analysis. Laboratory Animal Research. 2022; 38(1): 22. doi.org/10.1186/s42826-022-00131-6