Author(s):
Raed Abd-Elrahman Alhyasat, Khaled Khleifat, Ali M. Khlaifat, Ahmad Za’al Alsarayreh, Yaseen Taha Al Qaisi, Maha N. Abu Hajleh, Moath Alqaraleh, Alia K. Ibrahim
Email(s):
ahmsar@mutah.edu.jo
DOI:
10.52711/0974-360X.2024.00665
Address:
Raed Abd-Elrahman Alhyasat1, Khaled Khleifat2, Ali M. Khlaifat3, Ahmad Za’al Alsarayreh2*, Yaseen Taha Al Qaisi2, Maha N. Abu Hajleh4, Moath Alqaraleh5, Alia K. Ibrahim6
1Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan.
2Department of Biological Sciences, Faculty of Science, Mutah University, P.O. Box 7, Mutah 61710, Jordan.
3Department of Nursing, Faculty of Prince Aysha for Applied Health and Nursing, Al-Hussein Bin Talal University, Ma’an, Jordan.
4Department of Cosmetic Science, Pharmacological and Diagnostic Research Centre, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Zip code (19328), Amman, Jordan.
5Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
6Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
Background: Red blood cells go through a number of metabolic changes throughout the course of a 0-35 day storage period at 1 to 6oC. The sodium/potassium pump is immobilized, resulting in a drop in intracellular potassium with an increase in cytoplasmic sodium levels, a fall in glucose levels, acidosis as a result of low pH levels, and other alterations known as "storage lesions" during the storage phase. Thus, the purpose of this study was to assess the oxidative condition of red blood cells during storage, as well as certain related characteristics. Study Design and Methods: The whole blood was drawn and placed in a citrate-phosphate-dextrose adenine anticoagulant (CPDA). Blood samples were collected in the appropriate tube for each test at various storage times (zero, 7, 14, 21, and 35 days). All statistical analyses were carried out using SPSS ver. 26.0 (SPSS Inc., Chicago, IL, USA). Results: All the studied parameters showed significant differences at 35 days of storage when compared to zero time. The pH level decreases over the storage period. After 35 days, the average extracellular K+ level rose from 4.23 mmol/L at zero time to 29.86mmol/L. There was a slight increase in mean corpuscular volume (MCV) as a result of RBC storage. Discussion: This study demonstrated that, when care was made to assess pH and potassium ion concentrations to increase blood safety, red blood cells preserved in current storage media that retained their properties had acceptable transfusion quality.
Cite this article:
Raed Abd-Elrahman Alhyasat, Khaled Khleifat, Ali M. Khlaifat, Ahmad Za’al Alsarayreh, Yaseen Taha Al Qaisi, Maha N. Abu Hajleh, Moath Alqaraleh, Alia K. Ibrahim. Oxidative Stress and its connection to Jordanians' Red Blood Cell Storage. Research Journal of Pharmacy and Technology. 2024; 17(9):4304-0. doi: 10.52711/0974-360X.2024.00665
Cite(Electronic):
Raed Abd-Elrahman Alhyasat, Khaled Khleifat, Ali M. Khlaifat, Ahmad Za’al Alsarayreh, Yaseen Taha Al Qaisi, Maha N. Abu Hajleh, Moath Alqaraleh, Alia K. Ibrahim. Oxidative Stress and its connection to Jordanians' Red Blood Cell Storage. Research Journal of Pharmacy and Technology. 2024; 17(9):4304-0. doi: 10.52711/0974-360X.2024.00665 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-26
5. REFERENCES:
1. Himbert S. Qadri SM, Sheffield WP. Schubert P. D’Alessandro A. Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. Plos one. 2021; 16(11): e0259267. Doi: 10.1371/journal.pone.0259267
2. Rinalducci S. Marrocco C. Zolla L. Thiol‐based regulation of glyceraldehyde‐3‐phosphate dehydrogenase in blood bank–stored red blood cells: a strategy to counteract oxidative stress. Transfusion. 2015; 55(3):499-506. Doi: 10.1111/trf.12855
3. Roback J. Perspectives on the impact of storage duration on blood quality and transfusion outcomes. Vox Sanguinis. 2016; 111(4): 357-64. Doi: 10.1111/vox.12441
4. Tzounakas VL. Anastasiadi AT. Stefanoni D. Cendali F. Bertolone L. Gamboni F. Dzieciatkowska M. Rousakis P. Vergaki A. Soulakis V. Tsitsilonis OE. Beta thalassemia minor is a beneficial determinant of red blood cell storage lesion. Haematologica. 2022; 107(1): 112. Doi: 10.3324/haematol.2020.273946
5. Ozgonenel B. O'Malley B. Krishen P. Eisenbrey A. Warfarin reversal emerging as the major indication for fresh frozen plasma use at a tertiary care hospital. American Journal of Hematology. 2007; 82(12): 1091-4. Doi: 10.1002/ajh.20902
6. Slopecki A. Smith K. Moore S. The value of good manufacturing practice to a blood service in managing the delivery of quality. Vox Sang. 2007; 92(3): 187-96. Doi: 10.1111/j.1423-0410.2006.00878.x.
7. Flatt JF. Bawazir WM. Bruce L. The involvement of cation leaks in the storage lesion of red blood cells. Frontiers in Physiology. 2014; 5: 214. Doi: 10.3389/fphys.2014.00214
8. Hovav T. Yedgar S. Manny N. Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion. 1999; 39(3): 277-81. Doi: 10.1046/j.1537-2995.1999.39399219284.x.
9. Hess JR. RBC storage lesions. Blood, The Journal of the American Society of Hematology. 2016; 128(12): 1544-5. Doi: 10.1182/blood-2016-08-729541.
10. Hajleh M NA. Khleifat KM. Alqaraleh M. Al-Hraishat EA. Al-Limoun MO. Qaralleh H. Al-Dujaili E A. Antioxidant and antihyperglycemic effects of ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Nutrients. 2022; 14(11): 2338. Doi: 10.3390/nu14112338.
11. Sara JD. Widmer RJ. Matsuzawa Y. Lennon RJ. Lerman LO. Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. Cardiovascular Interventions.. 2015; 8(11): 1445-53. Doi: 10.1016/j.jcin.2015.06.017.
12. Reisz JA. Wither MJ. Dzieciatkowska M. Nemkov T. Issaian A. Yoshida T et al. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. The Journal of the American Society of Hematology. 2016; 128(12): e32-e42. Doi: 10.1182/blood-2016-05-714816.
13. Khleifat KM. Biodegradation of phenol by Actinobacillus sp.: Mathematical interpretation and effect of some growth conditions. Bioremediation Journal. 2007; 11(3): 103-12. Doi: 10.1080/10889860701429328
14. Qaralleh HA. Al-Limoun MO. Khlaifat A. Khleifat KM. Al-Tawarah N. Alsharafa KY. Abu-Harirah HA. Antibacterial and antibiofilm activities of a traditional herbal formula against respiratory infection causing bacteria. Journal arXiv Preprint arXiv: 043012021. https://doi.org/10.48550/arXiv.2102.04301
15. Cancelas JA, Slichter SJ, Rugg N, Pratt PG, Nestheide S, Corson J. Pellham E et al. Red blood cells derived from whole blood treated with riboflavin and ultraviolet light maintain adequate survival in vivo after 21 days of storage. Transfusion. 2017; 57(5): 1218-25. Doi.org/10.1111/trf.14084
16. Al-Sammarraie ON. Alsharafa KY. Al-Limoun MO. Khleifat KM. Al-Sarayreh SA. Al-Shuneigat JM. Kalaji HM. Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Scientific Reports. 2020; 10(1): 21131. Doi: 10.1038/s41598-020-78330-1.
17. DʼAlessandro A. Yoshida T. Nestheide S. Nemkov T. Stocker S. Stefanoni D. Mohmoud F et al. Hypoxic storage of red blood cells improves metabolism and post-transfusion recovery. Transfusion. 2020; 60(4): 786. Doi: 10.1111/trf.15730.
18. Henkelman S. Dijkstra‐Tiekstra MJ. De Wildt‐Eggen J. Graaff R. Rakhorst G. Van Oeveren W. Is red blood cell rheology preserved during routine blood bank storage? Transfusion. 2010; 50(4): 941-8. Doi: 10.1111/j.1537-2995.2009.02521.x.
19. Al Qaisi YT. Khleifat KM. Oran SA. Inhibitory Effects of Some Jordanian Medicinal Plants on In Vitro Viability of Protoscolices of Hydatid Cysts. Tropical Journal of Natural Product Research (TJNPR). 2021; 5(4): 707-714. Doi. org/10.26538/tjnpr/v5i4.19
20. Reinhart WH. Piety NZ. Shevkoplyas SS. Influence of red blood cell aggregation on perfusion of an artificial microvascular network. Microcirculation. 2017; 24(5): e12317. Doi: 10.1111/micc.12317.
21. Pries A. Secomb TW. Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovascular Research. 1996; 32(4): 654-67. https://doi.org/10.1016/S0008-6363(96)00065-X
22. Sparrow RL. Red blood cell storage duration and trauma. Transfusion Medicine Reviews. 2015; 29(2): 120-6. Doi: 10.1016/j.tmrv.2014.09.007
23. Daniels RC. Jun H. Davenport RD. Collinson MM. Ward KR. Using redox potential as a feasible marker for banked blood quality and the state of oxidative stress in stored red blood cells. Journal of Clinical Laboratory Analysis. 2021; 35(10): e23955. Doi: 10.1002/jcla.23955
24. McCord JM. The evolution of free radicals and oxidative stress. The American Journal of Medicine. 2000; 108(8): 652-9. Doi: 10.1016/s0002-9343(00)00412-5.
25. Khleifat KM. Nawayseh K. Adjeroud NR. Khlaifat AM. Aljundi IH. Tarawneh KA. Cadmium-resistance plasmid affected Cd+ 2 uptake more than Cd+ 2 adsorption in Klebsiella oxytoca. Bioremediation Journal. 2009; 13(4): 159-70. DOI: 10.1080/10889860903080739
26. Khleifat K. Alqaraleh M. Al-limoun M. Alfarrayeh I. Khatib R. Qaralleh H. Alsarayreh A et al. The ability of rhizopus stolonifer MR11 to biosynthesize silver nanoparticles in response to various culture media components and optimization of process parameters required at each stage of biosynthesis. Journal of Ecological Engineering. 2022; 23(8): 89-100. Doi.org/10.12911/22998993/150673.
27. Maddipati KR. Marnett LJ. Characterization of the major hydroperoxide-reducing activity of human plasma. Purification and properties of a selenium-dependent glutathione peroxidase. Journal of Biological Chemistry. 1987; 262(36): 17398-17403. https://doi.org/10.1016/S0021-9258(18)45392-6
28. Al-Limoun M. Qaralleh HN. Khleifat KM. Al-Anber M. Al-Tarawneh A. Al-sharafa K. Kailani MH et al. Culture media composition and reduction potential optimization of mycelia-free filtrate for the biosynthesis of silver nanoparticles using the fungus Tritirachium oryzae W5H. Current Nanoscience. 2020; 16(5): 757-69. Doi:10.2174/1573413715666190725111956
29. Khlaifat AM. Al-limoun MO. Khleifat KM. Al Tarawneh AA. Qaralleh H. Rayyan EA. Alsharafa KY. Antibacterial synergy of Tritirachium oryzae-produced silver nanoparticles with different antibiotics and essential oils derived from Cupressus sempervirens and Asteriscus graveolens (Forssk). Tropical Journal of Pharmaceutical Research. 2019; 18(12): 2605-16. http://dx.doi.org/10.4314/tjpr.v18i12.21
30. Meng Q. Peng X. Zhao S. Xu T. Wang S. Liu Q. Cai R. Fan Y. Hypoxic storage of erythrocytes slows down storage lesions and prolongs shelf‐life. Journal of Cellular Physiology. 2019; 234(12): 22833-44. Doi: 10.1002/jcp.28847.
31. Francis RO. D’Alessandro A. Eisenberger A. Soffing M. Yeh R. Coronel E. Sheikh A et al. Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion. The Journal of Clinical Investigation. 2020; 130(5):2270-85. Doi: 10.1172/JCI133530
32. Senanayake N. “We are the living dead”, or, the Precarious Stabilisation of Liminal Life in the Presence of CKDu. Antipode. 2022; 54(6): 1965-1985. Doi.org/10.1111/anti.12869
33. Zhu C. Niu Q. Yuan X. Chong J. Ren L. NonFreezable Preservation of Human Red Blood Cells at− 8° C. ACS Biomaterials Science and Engineering. 2022; 8(6): 2644-2653. Doi: 10.1021/acsbiomaterials.2c00141.
34. Sengupta P. Mahalakshmi V. Stebin J. Ganesh S. Suganya N. Chatterjee S. Nitric oxide donors offer protection to RBC from storage lesion. Transfus. Clin. Biol. 2020; 27(4): 229-36. Doi: 10.1016/j.tracli.2020.07.002.
35. Vardaki MZ. Schulze HG. Serrano K. Blades MW. Devine DV. Turner RF. Non‐invasive monitoring of red blood cells during cold storage using handheld Raman spectroscopy. Transfusion. 2021; 61(7): 2159-68. Doi: 10.1111/trf.16417
36. Richardson KJ. Kuck L. Simmonds MJ. Beyond oxygen transport: American Journal of Physiology-Heart and Circulatory Physiology. 2020; 319(4): H866-H72. Doi: 10.1152/ajpheart.00441.2020
37. Udegbunam R. Njaka C. Okereke H. Udegbunam S. Comparative evaluation of the in-vitro viability of canine and human blood preserved in citrate phosphate dextrose adenine (CPDA)-1 anticoagulated blood bag. Indian Journal of Animal Research. 2020; 54(5): 549-52. Doi : 10.18805/ijar.B-1039
38. Shahjahan M. Islam MJ. Hossain MT. Mishu MA. Hasan J. Brown C. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of the Total Environment. 2022; 24 (843): 156910. Doi: 10.1016/j.scitotenv.2022.156910
39. Oyet C. Okongo B. Onyuthi RA. Muwanguzi EJ. Biochemical changes in stored donor units: implications on the efficacy of blood transfusion. Journal of Blood Medicine. 2018; 9: 111-115. Doi: 10.2147/JBM.S163651
40. Levy J. Brown E. Lawrence A. Oxford Handbook of Dialysis: Oxford University Press; 2016; 18.
41. Khleifat KM. Sharaf EF. Al-limoun MO. Biodegradation of 2-chlorobenzoic acid by enterobacter cloacae: Growth kinetics and effect of growth conditions. Bioremediation Journal. 2015; 19(3): 207-17. https://doi.org/10.1080/10889868.2015.1029113
42. Al-Limoun MO. Khleifat KM. Alsharafa KY. Qaralleh HN. Alrawashdeh SA. Purification and characterization of a mesophilic organic solvent tolerant lipase produced by Acinetobacter sp. K5b4. Biocatalysis Biotransformation. 2019; 37(2): 139-51. Doi: 10.1080/10242422.2018.1506445
43. Huyut Z. Şekeroğlu MR. Balahoroğlu R. Karakoyun T. Çokluk E. The relationship of oxidation sensitivity of red blood cells and carbonic anhydrase activity in stored human blood: effect of certain phenolic compounds. BioMed Research International. 2016; 1: 3057384. Doi: 10.1155/2016/3057384
44. Chaudhary R. Katharia R. Oxidative injury as contributory factor for red cells storage lesion during twenty eight days of storage. Blood Transfusion. 2012; 10(1): 59-62. Doi: 10.2450/2011.0107-10
45. Mariano A. Bigioni I. Misiti F. Fattorini L. Scotto d’Abusco A. Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Current Issues in Molecular Biology. 2022; 44(8): 3481-3495. Doi: 10.3390/cimb44080240
46. Khleifat KM. Halasah RA. Tarawneh KA. Halasah Z. Shawabkeh R. Wedyan MA. Biodegradation of linear alkylbenzene sulfonate by Burkholderia sp.: Effect of some growth conditions. International Journal of Agriculture and Biology. 2010; 12: 17-25.
47. Rajashekaraiah V. Ravikumar S. Hsieh C. Chandni V. Neha K. Pankhuri B. Trishna S et al. Prospects of Vitamin C as an Additive in Plasma of Stored Blood. Advances in Hematology. 2015; 2015: 961049. Doi:10.1155/2015/961049
48. Dumaswala UJ, Zhuo L, Jacobsen DW, Jain SK, Sukalski KA. Protein and lipid oxidation of banked human erythrocytes: Role of glutathione. Free Radical Biologymed. 1999; 27(9-10): 1041-9. Doi: 10.1016/s0891
49. Marjani A. Mansoorian A. Joshaghani H. Heydari K. Sarikhani A. The Alterations of Plasma Iipid Peroxidation and erythrocyte Superoxide Dismutase and Glutathione Peroxidase Enzyme Activities During Storage of Blood. Medical Laboratory Journal. 2007; 1(1):0-0.
50. 50.Sanford K. Fisher BJ. Fowler E. Fowler EAA. Natarajan R. Natarajan R. Attenuation of red blood cell storage lesions with vitamin C. Antioxidants. 2017; 6(3): 55. Doi: 10.3390/antiox6030055.