Author(s):
Syamkumar TS, Geethalakshmi Sundararaman, Anu Augustine
Email(s):
s.geethalakshmi@gmail.com
DOI:
10.52711/0974-360X.2024.00661
Address:
Syamkumar TS1, Geethalakshmi Sundararaman2*, Anu Augustine1
1Department of Biotechnology, Sree Narayana Guru College, Bharathiar University, Coimbatore, 641105, Tamilnadu, India.
2Department of Biotechnology, RVS College of Arts and Science, Bharathiar University, Coimbatore, 641402, Tamilnadu, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 9,
Year - 2024
ABSTRACT:
The wetland plant Ludwigia perennis is a member of the Ongraceae genus. Many components of this plant offer a range of traditional therapeutic benefits. The major goal of this study is to identify the pharmacological properties of the root extract of the plant. The antioxidant activity was evaluated using DPPH, the total phosphomolybdenum test, and the hydroxyl radical scavenging assay. Using the a-amylase and a-glucosidase tests, anti-diabetic efficacy was found to exist. To identify the existence of anti-nutritional substances, the total phytic acid content, oxalate content, saponin content, and alkaloid content were examined. To comprehend the anticancer activity, HeLa cell lines was used for MTT testing and AO/EB dual labelling. A rat model analysis of anti-inflammatory activity was conducted. The IC50 value of the standard in the DPPH assay was 49.74µg/mL, and the root extract was 55.4µg/mL. In phosphomolybdenum assay, the IC50 value of the standard was 33.73 µg/mL, and root extract was 34.13µg/mL. The IC50 value of the reference compound in the hydroxyl radical scavenging assay was 55.6µg/mL, and that of the root extract was 69.06µg/mL. The IC50 of the standard in the a-amylase inhibitory assay is 394.48µg/mL, and the extract's IC50 is 327.82µg/mL, respectively. The IC50 of the standard in the a-glucosidase inhibitory assay was 394.06µg/mL, and the extract's IC50 was 361.58µg/mL, respectively. Anti-nutrients content such as alkaloids was 20%, oxalate 2.20%, phytate 3.25% and saponin 22% respectively. The IC50 of HeLa cells treated with root extract was 210µg/mL.Compared to the 59.44% inhibition generated by 10mg/kg of the standard medicine, indomethacin, the chloroform root extract of Ludwigia perennis provided 22.03% and 46.68% inhibition of paw edema at doses of 50mg/kg and 250mg/kg, respectively.These facts imply that the plant may be used to create novel medications.
Cite this article:
Syamkumar TS, Geethalakshmi Sundararaman, Anu Augustine. Evaluation of Pharmacological properties of Chloroform extract of Ludwigia perennis root – A Wetland Plant. Research Journal of Pharmacy and Technology. 2024; 17(9):4275-1. doi: 10.52711/0974-360X.2024.00661
Cite(Electronic):
Syamkumar TS, Geethalakshmi Sundararaman, Anu Augustine. Evaluation of Pharmacological properties of Chloroform extract of Ludwigia perennis root – A Wetland Plant. Research Journal of Pharmacy and Technology. 2024; 17(9):4275-1. doi: 10.52711/0974-360X.2024.00661 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-9-22
REFERENCES:
1. Cragg GM. Newman DJ. Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997; 60(1): 52-60. doi: 10.1021/np9604893.
2. De Smet PA. The role of plant-derived drugs and herbal medicines in healthcare. Drugs. 1997; 54(6): 801-40. doi: 10.2165/00003495-199754060-00003.
3. Shu YZ. Recent natural products based drug development: a pharmaceutical industry perspective. J Nat Prod. 1998; 61(8): 1053-71. doi: 10.1021/np9800102.
4. Nikhat F. Satyanarayana D. Subhramanyam EV. Phytochemistry and Pharmacology of Indian Medicinal Plants Zizyphus Mauritiana Lamk. Research Journal of Pharmacognosy and Phytochemistry. 2009; 1(1): 5-10.
5. Cox PA. The ethnobotanical approach to drug discovery: strengths and limitations. Ciba Found Symp. 1994; 185: 25-36.
6. Harvey A. Strategies for discovering drugs from previously unexplored natural products. Drug Discov Today. 2000; 5(7): 294-300. doi: 10.1016/s1359-6446(00)01511-7.
7. Doke CO. Tiwari RS.Todekar VB. Mane AP. Sawant VS. Sawant GV. Herb Drug Interaction in Antibiotic Drug, Antiulcer Drug, Antihypertensive Drug, Antidiabetic Drug, Anticancer Drug. Research Journal of Science and Technology. 2023; 15(2): 119-26. https://doi.org/10.52711/2349-2988.2023.00020
8. Alluri P. Liu B. Yu P. Xiao X. Kodadek T. Isolation and characterization of coactivator-binding peptoids from a combinatorial library. Mol Biosyst. 2006; 2(11): 568-79. doi: 10.1039/b608924k.
9. Shilpi JA. Gray AI. Seidel V. Chemical constituents from Ludwigia adscendens. Biochemical Systematics and Ecology. 2010; 38(1): 106-109.
10. Oyedeji O. Oziegbe M. Taiwo FO. Antibacterial, antifungal and phytochemical analysis of crude extracts from the leaves of Ludwigia abyssinica A. Rich. and Ludwigia decurrens Walter. Journal of Medicinal Plants Research. 2011; 5(7): 1192-1199.
11. Murugesan T. Ghosh L. Mukherjee K. Das J. Pal M. Saha BP. Evaluation of antidiarrhoeal profile of Jussiaea suffruticosa Linn. extract in rats. Phytotherapy Research. 2000; 14(5): 381-383. https://doi.org/10.1002/10991573(200008)14:5%3C381:AID-PTR590%3E3.0.CO;2-P
12. Das B. Bachar SC. Kundu JK. Evaluation of antitumor and antibacterial activity of Ludwigia hyssopifolia Linn. Bangladesh Journal of Botany. 2002; 31: 15-18.
13. Syamkumar TS. Geethalakshmi S. Anu A. Comparitive phytochemical analysis of Melochia corchorifolia and Ludwigia perennis using different solvent extracts. Asian Journal of Research in Chemistry and Pharmaceutical Sciences. 2022; 10(4): 187-193. https://doi.org/10.36673/AJRCPS.2022.v10.i04.A16
14. Fitrawan LO. Arba M. Free Radical Scavenging Activity of extract and fraction of Okra seeds determined by DPPH (2, 2-diphenyl-1-picrylhydrazy) method. Research Journal of Pharmacy and Technology. 2021; 14(4): 2045-8. https://doi.org/10.52711/0974-360X.2021.00363
15. Djemoui A. Djemoui D. Souli L. Souadia A. Gouamid M. The Antidiabetic, Antioxidant properties in vitro of Moringa oleifera Flowers extracts grown in Sahara of Algeria. Asian Journal of Research in Chemistry. 2021; 14(3): 173-178. https://doi.org/10.52711/0974-4150.2021.00032
16. Gokani RH. Rachchh MA. Lahiri SK. Santani DD. Shah MB. Evaluation of in vitro Anti-Oxidant Activity of Premna integrifolia Linn. Mant. Root. Research Journal of Pharmacognosy and Phytochemistry. 2010; 2(3): 196-9.
17. Omoruyi BE. Bradley G. Afolayan AJ. Anti-oxidant and phytochemical properties of Carpobrotus edulis (L.) bolus leaf used for the management of common infections in HIV/AIDS patients in Eastern Cape Province. BMC Complement. Altern. Med. 2012; 12: 1-9. https://doi.org/10.1186/1472-6882-12-215
18. Agbaire PO. Nutritional and anti-nutritional levels of some local vegetables (Vernonia amygdalina, Manihot esculenta, Telferia occidentalis, Talinum triangulare and Amaranthus spinosus) from Delta State, Nigeria. J. Appl. Sci. Environ. Manag. 2011; 15: 625-628.
19. Damilola OL. Joseph OB. Olufemi A. Amoo IA. Chemical composition of red and white cocoyam (Colocosia esculenta) leaves. Int. J. Sci. Res. 2013; 11: 121-125.
20. Otang WM. Grierson DS. Ndip RN. Antifungal activity of Arctotis arctotoides (L.f) O. Hoffm. and Gasteria bicolor Haw. against opportunistic fungi associated with HIV/AIDS. Pharmacogn. Mag. 2012; 30: 135-140. http://dx.doi.org/10.4103/0973-1296.96564
21. Godavari A. Amutha K. In vitro Antidiabetic Activity of Garcinia mangostana by Enzymatic Inhibition Assay. Research Journal of Pharmacy and Technology. 2017; 10(2): 508-12. https://doi.org/10.5958/0974-360X.2017.00101.9
22. Jose BE. Panneerselvam P. In Vitro Antidiabetic activity of Ethanol and Aqueous leaf extracts of Azima tetracantha Lam. Research Journal of Science and Technology. 2019; 11(1): 64-8. https://doi.org/10.5958/2349-2988.2019.00009.3
23. Winter CA. Risley EA. Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med. 1962; 111: 544-7. https://doi.org 10.3181/00379727-111-27849
24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
25. Baskic D. Popovic S. Ristic P. Arsenijevic NN. Analysis of cyclohexamide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orang e/ethidium bromide. Cell Biol Int. 2006; 30: 924-932. https://doi.org/10.1016/j.cellbi.2006.06.016
26. Umamaheswari M. Chatterjee TK. In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr J Tradit Complement Altern Med. 2007; 5(1): 61-73.
27. Nunes X. Silva. Fabricio. Almeida. Jackson R. Lima J. Ribeiro L. Quintans-Júnior L. Barbosa F. Jose. Biological Oxidations and Antioxidant Activity of Natural Products. 2011; 10.5772/26956.
28. Shlini P, Murthy KR. Extraction of phenolics, proteins and antioxidant activity from defatted tamarind kernel powder. Asian Journal of Research in Chemistry. 2011; 4(6): 936-41.
29. Hayyan M. Hashim MA. AlNashef IM. Superoxide Ion: Generation and Chemical Implications. Chem Rev. 2016; 116(5): 3029-85. doi: 10.1021/acs.chemrev.5b00407.
30. Floyd RA. Lewis CA. Hydroxyl free radical formation from hydrogen peroxide by ferrous iron-nucleotide complexes. Biochemistry. 1983; 22(11): 2645-9. doi: 10.1021/bi00280a008.
31. Michiels C. Physiological and pathological responses to hypoxia. Am J Pathol. 2004; 164(6): 1875-82. doi: 10.1016/S0002-9440(10)63747-9.
32. Dizdaroglu M. Jaruga P. Mechanisms of free radical-induced damage to DNA. Free Radic Res. 2012; 46(4): 382-419. doi: 10.3109/10715762.2011.653969.
33. Sundarrajan T. Velmurugan V. Srimathi R. Phytochemical Evaluation and In Vitro Antidiabetic Activity of Ethanolic extract of Alternanthera ficodia Linn. Research Journal of Pharmacy and Technology. 2017; 10(9): 2981-3. https://doi.org/https://doi.org/10.5958/0974-360X.2017.00527.3
34. Kao TH. Huang SC. Inbaraj BS. Chen BH. Determination of flavonoids and saponins in Gynostemma pentaphyllum (Thunb.) Makino by liquid chromatography–mass spectrometry. Analytica Chimica Acta. 2008; 626(2): 200-211. https://doi.org/10.1016/j.aca.2008.07.049
35. Lü L. Liu SW. Jiang SB. Wu SG. Tannin inhibits HIV-1 entry by targeting gp41. Acta Pharmacol Sin. 2004; 25(2): 213-8.
36. Akiyama H. Fujii K. Yamasaki O. Oono T. Iwatsuki K. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrob Chemother. 2001; 48(4): 487-91. doi: 10.1093/jac/48.4.487.
37. Kolodziej H. Kiderlen AF. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasitised RAW 264.7 cells. Phytochemistry. 2005; 66(17): 2056-71. doi: 10.1016/j.phytochem.2005.01.011.
38. Banerjee S. Sur TK. Mandal S. Das PC. Sikdar S. Assessment of the anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats. Indian Journal of Pharmacology. 2000; 32(1): 21-24.
39. Mahdjar S. Bakka C. Dendougui H. Hadjadj M. Phytochemical profile and In vitro Anti-inflammatory Activity of Anvillea radiata (Coss and Dur) flowers Extracts. Asian Journal of Research in Chemistry. 2020; 13(1): 44-7. https://doi.org/10.5958/0974-4150.2020.00010.3
40. Vlietinck AJ. Van Hoof L. Totté J. Lasure A. Vanden Berghe D. Rwangabo PC. Mvukiyumwami J. Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol. 1995; 46(1): 31-47. doi: 10.1016/0378-8741(95)01226-4.
41. Jaiprakash B. Chandramohan. Reddy DN. Burn wound healing activity of Euphorbia hirta. Anc Sci Life. 2006; 25(3-4): 16-8.
42. Liu Y. Murakami N. Ji H. Abreu P. Zhang S. Antimalarial Flavonol Glycosides from Euphorbia hirta. Pharmaceutical Biology. 2007; 45(4): 278-281. doi.org/10.1080/13880200701214748