Author(s): Anuradha N, Saravana Kumar S, Hima Bindu N, Gnanavel A, Karthick S

Email(s): dkanuradha2003@gmail.com

DOI: 10.52711/0974-360X.2024.00636   

Address: Anuradha N1*, Saravana Kumar S1, Hima Bindu N2, Gnanavel A1, Karthick S1
1Department of Anatomy, MMCHRI, MAHER, Kancheepuram, Tamil Nadu - 631552, India.
2Department of Anatomy, MAMS, Hyderabad - 500090, Telangana, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Monosodium Glutamate (MSG), constitutes a few of the most commonly encountered additives in processed foodstuffs. Its use has grown throughout the years, and consumers are able to recognise it in a wide variety of processed products, as well as ingredients at any stall or grocery shop. Several investigations have challenged its long-term safety, despite the fact it is usually acknowledged as safe by organisations that oversee food safety. The present review details the impact of MSG on gut health and other complications. Increased MSG consumption, and its potential effects on the gastrointestinal system involving glutamatergic neuronal transmission, inflammatory mediators, and gut microbiota have been reviewed in this article. This narrative review has been performed from January 2023 to June 2023 using the literature obtained from databases like Scopus, PubMed, and other databases of The National Library of Medicine, USA. This review may provide further insights into safety issues related to MSG and its use as a food additive or ingredient.


Cite this article:
Anuradha N, Saravana Kumar S, Hima Bindu N, Gnanavel A, Karthick S. A Review of the effects of Monosodium Glutamate on Gut health. Research Journal of Pharmacy and Technology.2024; 17(8):4103-9. doi: 10.52711/0974-360X.2024.00636

Cite(Electronic):
Anuradha N, Saravana Kumar S, Hima Bindu N, Gnanavel A, Karthick S. A Review of the effects of Monosodium Glutamate on Gut health. Research Journal of Pharmacy and Technology.2024; 17(8):4103-9. doi: 10.52711/0974-360X.2024.00636   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-84


REFERENCES:
1.    Stańska K, Krzeski Prof dr hab. n. med. A. The umami taste: from Discovery to clinical use. Otolaryngologia Polska. 2016; 70(4): 10-15. doi:10.5604/00306657.1199991
2.    Kurihara K. Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. Biomed Res Int. 2015; 2015: 189402. doi:10.1155/2015/189402
3.    Kochem M, Breslin PAS. Clofibrate inhibits the umami-savory taste of glutamate. PLoS One. 2017; 12(3): e0172534. doi:10.1371/journal.pone.0172534
4.    Masic U, Yeomans MR. Does monosodium glutamate interact with macronutrient composition to influence subsequent appetite? Physiol Behav. 2013; 116-117: 23-29. doi:10.1016/j.physbeh.2013.03.017
5.    Zanfirescu A, Ungurianu A, Tsatsakis AM, et al. A Review of the Alleged Health Hazards of Monosodium Glutamate. Compr Rev Food Sci Food Saf. 2019; 18(4): 1111-1134. doi:10.1111/1541-4337.12448
6.    Ghanta MK, Merchant N, Bhaskar LVKS. A Review on Hematopoietic Stem Cell Treatment for Epilepsy. CNS Neurol Disord Drug Targets. 2021; 20(7): 644-656. doi:10.2174/1871527320666210218085816
7.    Ghanta MK, Elango P. Current Therapeutic Strategies and Perspectives for Neuroprotection in Parkinson’s Disease. Curr Pharm Des. 2020; 26(37): 4738-4746. doi:10.2174/1381612826666200217114658
8.    Kim MH, Kim H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int J Mol Sci. 2017; 18(5): 1051. doi:10.3390/ijms18051051
9.    Dechelotte P, Darmaun D, Rongier M, Hecketsweiler B, Rigal O, Desjeux JF. Absorption and metabolic effects of enterally administered glutamine in humans. American Journal of Physiology-Gastrointestinal and Liver Physiology. 1991; 260(5): G677-G682. doi:10.1152/ajpgi.1991.260.5.G677
10.    Newsholme EA, Carrie AL. Quantitative aspects of glucose and glutamine metabolism by intestinal cells. Gut. 1994; 35(1 Suppl): S13-S17. doi:10.1136/gut.35.1_Suppl.S13
11.    Hankard RG, Darmaun D, Sager BK, D’Amore D, Parsons WR, Haymond M. Response of glutamine metabolism to exogenous glutamine in humans. American Journal of Physiology-Endocrinology and Metabolism. 1995; 269(4): E663-E670. doi:10.1152/ajpendo.1995.269.4.E663
12.    Evans MA, Shronts EP. Intestinal fuels: glutamine, short-chain fatty acids, and dietary fiber. J Am Diet Assoc. 1992; 92(10): 1239-1246, 1249.
13.    Kim H. Glutamine as an Immunonutrient. Yonsei Med J. 2011; 52(6): 892. doi:10.3349/ymj.2011.52.6.892
14.    McCauley R, Kong SE, Hall J. Review: Glutamine and Nucleotide Metabolism Within Enterocytes. Journal of Parenteral and Enteral Nutrition. 1998; 22(2): 105-111. doi:10.1177/0148607198022002105
15.    Wang B, Wu G, Zhou Z, et al. Glutamine and intestinal barrier function. Amino Acids. 2015; 47(10): 2143-2154. doi:10.1007/s00726-014-1773-4
16.    Ghanta M, Panchanathan E, Lakkakula BVKS, Narayanaswamy A. Retrospection on the Role of Soluble Guanylate Cyclase in Parkinson's Disease. J Pharmacol Pharmacother. 2017; 8(3): 87-91. doi:10.4103/jpp.JPP_45_17
17.    Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014; 121(8): 799-817. doi:10.1007/s00702-014-1180-8
18.    Gill SS, Pulido OM. Review Article: Glutamate Receptors in Peripheral Tissues: Current Knowledge, Future Research, and Implications for Toxicology. Toxicol Pathol. 2001; 29(2): 208-223. doi:10.1080/019262301317052486
19.    Filpa V, Moro E, Protasoni M, Crema F, Frigo G, Giaroni C. Role of glutamatergic neurotransmission in the enteric nervous system and brain-gut axis in health and disease. Neuropharmacology. 2016; 111: 14-33. doi:10.1016/j.neuropharm.2016.08.024
20.    Kirchgessner A. Glutamate in the enteric nervous system. Curr Opin Pharmacol. 2001; 1(6): 591-596. doi:10.1016/S1471-4892(01)00101-1
21.    Hornby PJ. II. Excitatory amino acid receptors in the brain-gut axis. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2001; 280(6): G1055-G1060. doi:10.1152/ajpgi.2001.280.6.G1055
22.    Julio-Pieper M, Flor PJ, Dinan TG, Cryan JF. Exciting Times beyond the Brain: Metabotropic Glutamate Receptors in Peripheral and Non-Neural Tissues. Pharmacol Rev. 2011; 63(1): 35-58. doi:10.1124/pr.110.004036
23.    Miladinovic T, Nashed M, Singh G. Overview of Glutamatergic Dysregulation in Central Pathologies. Biomolecules. 2015; 5(4): 3112-3141. doi:10.3390/biom5043112
24.    Gruenbaum BF, Zlotnik A, Frenkel A, Fleidervish I, Boyko M. Glutamate Efflux across the Blood–Brain Barrier: New Perspectives on the Relationship between Depression and the Glutamatergic System. Metabolites. 2022; 12(5): 459. doi:10.3390/metabo12050459
25.    Zhang YZ. Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 2014; 20(1): 91. doi:10.3748/wjg.v20.i1.91
26.    Lakatos PL. Current concept on the pathogenesis of inflammatory bowel disease-crosstalk between genetic and microbial factors: Pathogenic bacteria and altered bacterial sensing or changes in mucosal integrity take “toll.” World J Gastroenterol. 2006; 12(12): 1829. doi:10.3748/wjg.v12.i12.1829
27.    Magalhães HIR, Castelucci P. Enteric nervous system and inflammatory bowel diseases: Correlated impacts and therapeutic approaches through the P2X7 receptor. World J Gastroenterol. 2021; 27(46): 7909-7924. doi:10.3748/wjg.v27.i46.7909
28.    Gonzalez Acera M, Bubeck M, Mascia F, et al. Dynamic, Transient, and Robust Increase in the Innervation of the Inflamed Mucosa in Inflammatory Bowel Diseases. Cells. 2021; 10(9): 2253. doi:10.3390/cells10092253
29.    Mawe GM. Colitis-induced neuroplasticity disrupts motility in the inflamed and post-inflamed colon. Journal of Clinical Investigation. 2015; 125(3): 949-955. doi:10.1172/JCI76306
30.    Bistoletti M, Micheloni G, Baranzini N, et al. Homeoprotein OTX1 and OTX2 involvement in rat myenteric neuron adaptation after DNBS-induced colitis. PeerJ. 2020; 8: e8442. doi:10.7717/peerj.8442
31.    Whittaker VP. Some Currently Neglected Aspects of Cholinergic Function. Journal of Molecular Neuroscience. 2010; 40(1-2): 7-11. doi:10.1007/s12031-009-9247-y
32.    Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int J Mol Sci. 2022; 23(13): 6917. doi:10.3390/ijms23136917
33.    Yoo BB, Mazmanian SK. The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity. 2017;4 6(6): 910-926. doi:10.1016/j.immuni.2017.05.011
34.    Kaszaki J, Érces D, Varga G, Szabó A, Vécsei L, Boros M. Kynurenines and intestinal neurotransmission: the role of N-methyl-d-aspartate receptors. J Neural Transm. 2012; 119(2): 211-223. doi:10.1007/s00702-011-0658-x
35.    Érces D, Varga G, Fazekas B, et al. N-methyl-d-aspartate receptor antagonist therapy suppresses colon motility and inflammatory activation six days after the onset of experimental colitis in rats. Eur J Pharmacol. 2012; 691(1-3): 225-234. doi:10.1016/j.ejphar.2012.06.044
36.    Ghorbanzadeh B, Behmanesh MA, Mahmoudinejad R, Zamaniyan M, Ekhtiar S, Paridar Y. The effect of montelukast, a leukotriene receptor antagonist, on the acetic acid-induced model of colitis in rats: Involvement of NO-cGMP-KATP channels pathway. Front Pharmacol. 2022; 13. doi:10.3389/fphar.2022.1011141
37.    Mishra SK, Hidau M, Rai S. Memantine and Ibuprofen pretreatment exerts anti-inflammatory effect against streptozotocin-induced astroglial inflammation via modulation of NMDA receptor-associated downstream calcium ion signaling. Inflammopharmacology. 2021; 29(1): 183-192. doi:10.1007/s10787-020-00760-0
38.    Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil. 2022; 28(4): 517-530. doi:10.5056/jnm22100
39.    Khalil M, Alliger K, Weidinger C, et al. Functional Role of Transient Receptor Potential Channels in Immune Cells and Epithelia. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.00174
40.    Montgomery SL, Bowers WJ. Tumor Necrosis Factor-alpha and the Roles it Plays in Homeostatic and Degenerative Processes Within the Central Nervous System. Journal of Neuroimmune Pharmacology. 2012; 7(1): 42-59. doi:10.1007/s11481-011-9287-2
41.    Viviani B, Boraso M, Marchetti N, Marinovich M. Perspectives on neuroinflammation and excitotoxicity: A neurotoxic conspiracy? Neurotoxicology. 2014; 43: 10-20. doi:10.1016/j.neuro.2014.03.004
42.    Wąsik A, Białoń M, Jantas D, Żarnowska M. The Impact of the Combined Administration of 1MeTIQ and MK-801 on Cell Viability, Oxidative Stress Markers, and Glutamate Release in the Rat Hippocampus. Neurotox Res. 2021; 39(6): 1747-1761. doi:10.1007/s12640-021-00428-9
43.    Pavlovic V, Cekic S, Sokolovic D, Djindjic B. Modulatory effect of monosodium glutamate on rat thymocyte proliferation and apoptosis. Bratisl Lek Listy. 2006; 107(5): 185-191.
44.    Tchkonia T, Morbeck DE, Von Zglinicki T, et al. Fat tissue, aging, and cellular senescence. Aging Cell. 2010; 9(5): 667-684. doi:10.1111/j.1474-9726.2010.00608.x
45.    Hernández-Bautista R, Alarcón-Aguilar F, Del C. Escobar-Villanueva M, et al. Biochemical Alterations during the Obese-Aging Process in Female and Male Monosodium Glutamate (MSG)-Treated Mice. Int J Mol Sci. 2014; 15(7): 11473-11494. doi:10.3390/ijms150711473
46.    Hata K, Kubota M, Shimizu M, et al. Monosodium glutamate-induced diabetic mice are susceptible to azoxymethane-induced colon tumorigenesis. Carcinogenesis. 2012; 33(3): 702-707. doi:10.1093/carcin/bgr323
47.    Roman-Ramos R, Almanza-Perez JC, Garcia-Macedo R, et al. Monosodium Glutamate Neonatal Intoxication Associated with Obesity in Adult Stage is Characterized by Chronic Inflammation and Increased mRNA Expression of Peroxisome Proliferator-Activated Receptors in Mice. Basic Clin Pharmacol Toxicol. 2011; 108(6): 406-413. doi:10.1111/j.1742-7843.2011.00671.x
48.    Park EJ, Lee JH, Yu GY, et al. Dietary and Genetic Obesity Promote Liver Inflammation and Tumorigenesis by Enhancing IL-6 and TNF Expression. Cell. 2010; 140(2): 197-208. doi:10.1016/j.cell.2009.12.052
49.    Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma. Cancer. 2009; 115(24): 5651-5661. doi:10.1002/cncr.24687
50.    Nakanishi Y, Tsuneyama K, Fujimoto M, et al. Monosodium glutamate (MSG): A villain and promoter of liver inflammation and dysplasia. J Autoimmun. 2008; 30(1-2): 42-50. doi:10.1016/j.jaut.2007.11.016
51.    Hoang BX, Levine SA, Pham P, Shaw DG. Hypothesis of the cause and development of neoplasms. European Journal of Cancer Prevention. 2007; 16(1): 55-61. doi:10.1097/01.cej.0000220636.15976.4c
52.    Ratziu V, Bonyhay L, Di Martino V, et al. Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis. Hepatology. 2002; 35(6): 1485-1493. doi:10.1053/jhep.2002.33324
53.    Dluzen DF, Lazarus P. MicroRNA regulation of the major drug-metabolizing enzymes and related transcription factors. Drug Metab Rev. 2015; 47(3): 320-334. doi:10.3109/03602532.2015.1076438
54.    Matoušková P, Bártíková H, Boušová I, Levorová L, Szotáková B, Skálová L. Drug-Metabolizing and Antioxidant Enzymes in Monosodium L-Glutamate Obese Mice. Drug Metabolism and Disposition. 2015; 43(2): 258-265. doi:10.1124/dmd.114.061176
55.    Beyerle J, Frei E, Stiborova M, Habermann N, Ulrich CM. Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer. Drug Metab Rev. 2015; 47(2): 199-221. doi:10.3109/03602532.2014.996649
56.    Lacy BE, Mearin F, Chang L, et al. Bowel Disorders. Gastroenterology. 2016; 150(6): 1393-1407. e5. doi:10.1053/j.gastro.2016.02.031
57.    Tuck CJ, Abu Omar A, De Palma G, et al. Changes in signalling from faecal neuroactive metabolites following dietary modulation of IBS pain. Gut. 2023; 72(9): 1678-1691. doi:10.1136/gutjnl-2022-327260
58.    Brant BJA, Yu Y, Omar AA, et al. Dietary monosodium glutamate increases visceral hypersensitivity in a mouse model of visceral pain. Neurogastroenterology & Motility. 2023; 35(9). doi:10.1111/nmo.14596
59.    Violi A, Cambiè G, Miraglia C, et al. Epidemiology and risk factors for diverticular disease. Acta Biomed. 2018;89(9-S):107-112. doi:10.23750/abm.v89i9-S.7924
60.    Elisei W, Tursi A. Recent advances in the treatment of colonic diverticular disease and prevention of acute diverticulitis. Ann Gastroenterol. 2016; 29(1): 24-32.
61.    Mashayekhi R, Bellavance DR, Chin SM, et al. Obesity, but Not Physical Activity, Is Associated With Higher Prevalence of Asymptomatic Diverticulosis. Clinical Gastroenterology and Hepatology. 2018; 16(4): 586-587. doi:10.1016/j.cgh.2017.09.005
62.    Tursi A, Mastromarino P, Capobianco D, et al. Assessment of Fecal Microbiota and Fecal Metabolome in Symptomatic Uncomplicated Diverticular Disease of the Colon. J Clin Gastroenterol. 2016; 50(Supplement 1): S9-S12. doi:10.1097/MCG.0000000000000626
63.    Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017; 14(2): 110-121. doi:10.1038/nrgastro.2016.181
64.    Ghanta MK, Gursale SC, Bhaskar LVKS. Understanding Colorectal Cancer: The Basics. In: ; 2020: 93-115. doi:10.1007/978-981-15-2017-4_7
65.    Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017; 15(1): 73. doi:10.1186/s12967-017-1175-y
66.    Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. The Lancet. 2008; 371(9612): 569-578. doi:10.1016/S0140-6736(08)60269-X
67.    Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut Microbiota in Health and Disease. Physiol Rev. 2010; 90(3): 859-904. doi:10.1152/physrev.00045.2009
68.    Hawrelak JA, Myers SP. The causes of intestinal dysbiosis: a review. Altern Med Rev. 2004; 9(2): 180-197.
69.    Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol. 2016; 7. doi:10.3389/fphys.2016.00051
70.    Gentile CL, Weir TL. The gut microbiota at the intersection of diet and human health. Science (1979). 2018; 362(6416): 776-780. doi:10.1126/science.aau5812
71.    Nahok K, Phetcharaburanin J, Li J V., et al. Monosodium Glutamate Induces Changes in Hepatic and Renal Metabolic Profiles and Gut Microbiome of Wistar Rats. Nutrients. 2021; 13(6): 1865. doi:10.3390/nu13061865
72.    Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar AR, Torres N. Differential Effect of Sucrose and Fructose in Combination with a High Fat Diet on Intestinal Microbiota and Kidney Oxidative Stress. Nutrients. 2017; 9(4). doi:10.3390/nu9040393
73.    Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care. 2015; 18(5): 515-520. doi:10.1097/MCO.0000000000000209
74.    Do M, Lee E, Oh MJ, Kim Y, Park HY. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients. 2018; 10(6): 761. doi:10.3390/nu10060761
75.    Laitinen K, Mokkala K. Overall Dietary Quality Relates to Gut Microbiota Diversity and Abundance. Int J Mol Sci. 2019; 20(8): 1835. doi:10.3390/ijms20081835
76.    Suharoschi R, Pop OL, Vlaic RA, et al. Dietary Fiber and Metabolism. In: Dietary Fiber: Properties, Recovery, and Applications. Elsevier; 2019: 59-77. doi:10.1016/B978-0-12-816495-2.00003-4
77.    Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol. 2014; 12(10): 661-672. doi:10.1038/nrmicro3344
78.    Desai MS, Seekatz AM, Koropatkin NM, et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016; 167(5): 1339-1353.e21. doi:10.1016/j.cell.2016.10.043
79.    Tailford LE, Crost EH, Kavanaugh D, Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet. 2015; 6. doi:10.3389/fgene.2015.00081
80.    Gao M, Zhong A, Patel N, Alur C, Vyas D. High throughput RNA sequencing utility for diagnosis and prognosis in colon diseases. World J Gastroenterol. 2017; 23(16): 2819. doi:10.3748/wjg.v23.i16.2819
81.    Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017; 14(10): 573-584. doi:10.1038/nrgastro.2017.88
82.    Dulal S, Keku TO. Gut Microbiome and Colorectal Adenomas. The Cancer Journal. 2014; 20(3): 225-231. doi:10.1097/PPO.0000000000000050
83.    Mahore JG, Deshpande N V., Trivedi R V., Shelar AS. Ulcerative colitis: Treatment updates. Res J Pharm Technol. 2020; 13(7): 3466. doi:10.5958/0974-360X.2020.00615.0
84.    Akshaya K, Chitra V. A Review on Pathological State and Herbal Remedies on Ulcerative Colitis. Res J Pharm Technol. 2019; 12(3): 1409. doi:10.5958/0974-360X.2019.00235.X
85.    Miftahussurur M, Aji Savitri CM, Ayu Rezkhita YA, et al. A Systematic Review of Complementary Therapies in Colorectal cancer patients: Summarizing the Current Global Options. Res J Pharm Technol. Published online March 31, 2023: 1540-1546. doi:10.52711/0974-360X.2023.00252
86.    Deshmukh R, Kumari S, Harwansh RK. Inflammatory Bowel Disease: A Snapshot of Current Knowledge. Res J Pharm Technol. 2020; 13(2): 956. doi:10.5958/0974-360X.2020.00180.8
87.    Datta A, Hossain A, Roy S. An Overview on Monosodium Glutamate: Its direct and indirect effects. Res J Pharm Technol. 2019; 12(12): 6187. doi:10.5958/0974-360X.2019.01074.6
88.    Ahmed I, Ahmed N, Ahmed S, Ahmad F, Al-Subaie AM. Effect of Emblica officinalis (Amla) on Monosodium Glutamate (MSG) Induced Uterine Fibroids in Wistar Rats. Res J Pharm Technol. 2020; 13(6): 2535. doi:10.5958/0974-360X.2020.00451.5
89.    Machiels K, Sabino J, Vandermosten L, et al. Specific members of the predominant gut microbiota predict pouchitis following colectomy and IPAA in UC. Gut. 2017; 66(1): 79-88. doi:10.1136/gutjnl-2015-309398
90.    Costello SP, Hughes PA, Waters O, et al. Effect of Fecal Microbiota Transplantation on 8-Week Remission in Patients With Ulcerative Colitis. JAMA. 2019; 321(2): 156. doi:10.1001/jama.2018.20046
91.    Mima K, Sukawa Y, Nishihara R, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015; 1(5): 653. doi:10.1001/jamaoncol.2015.1377
92.    Mima K, Cao Y, Chan AT, et al. Fusobacterium nucleatum in Colorectal Carcinoma Tissue According to Tumor Location. Clin Transl Gastroenterol. 2016; 7(11): e200. doi:10.1038/ctg.2016.53
93.    Richard ML, Liguori G, Lamas B, et al. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes. 2018; 9(2): 131-142. doi:10.1080/19490976.2017.1379637
94.    Dubey P, Sumithra M, Chitra V. Assessment of Inflammatory Bowel Disease and its Herbal Cure: A Review. Res J Pharm Technol. 2019; 12(3): 1432. doi:10.5958/0974-360X.2019.00238.5
95.    Miftahussurur M, Aji Savitri CM, Ayu Rezkhita YA, et al. A Systematic Review of Complementary Therapies in Colorectal cancer patients: Summarizing the Current Global Options. Res J Pharm Technol. Published online March 31, 2023: 1540-1546. doi:10.52711/0974-360X.2023.00252
96.    Yanti N, Nurliza C, A. Gani B. Evaluating the Sapindusrarak DC Chemical compounds for their ability to inhibit the growth of Fusobacterium nucleatum In vitro. Res J Pharm Technol. Published online March 31, 2023: 1231-1238. doi:10.52711/0974-360X.2023.00204
97.    Ragunathan A, Ravi L, Krishna K. Cytotoxic potential of 4-Hydroxypentan-2-Oneextracted from Jacaranda mimosifolia on colorectal cancer cells. Res J Pharm Technol. 2018; 11(6): 2251. doi:10.5958/0974-360X.2018.00417.1
98.    Prosberg M, Bendtsen F, Vind I, Petersen AM, Gluud LL. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol. 2016; 51(12): 1407-1415. doi:10.1080/00365521.2016.1216587
99.    Peters BA, Dominianni C, Shapiro JA, et al. The gut microbiota in conventional and serrated precursors of colorectal cancer. Microbiome. 2016; 4(1): 69. doi:10.1186/s40168-016-0218-6
100.    Mangifesta M, Mancabelli L, Milani C, et al. Mucosal microbiota of intestinal polyps reveals putative biomarkers of colorectal cancer. Sci Rep. 2018; 8(1): 13974. doi:10.1038/s41598-018-32413-2
101.    Hale VL, Chen J, Johnson S, et al. Shifts in the Fecal Microbiota Associated with Adenomatous Polyps. Cancer Epidemiol Biomarkers Prev. 2017; 26(1): 85-94. doi:10.1158/1055-9965.EPI-16-0337





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available