Author(s): Deepshikha Verma, K.P. Namdeo

Email(s): vermadeepshikha27031993@gmail.com , knamdeo@yahoo.com

DOI: 10.52711/0974-360X.2024.00635   

Address: Deepshikha Verma*, K.P. Namdeo
Department of Pharmacy, Guru Ghasidas Vishwavidyalaya Bilaspur, C.G. India– 495009.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Millions of animals are used for laboratory research and development purposes each year; these living creatures endure suffering before being killed. Animal testing has other drawbacks in addition to bioethical concerns, such as high costs, the need for specialized labor, permission, and time commitment. As a result, Researchers have worked to make several substitute techniques that may replace using animals in tests. These techniques potentially save millions of animals' lives every year, in addition to providing precise findings. In- silico pharmacology methods are used in conjunction with computer and robotics research methodologies to develop alternative techniques for animal experimentation. In this context, several approaches are listed. Certain techniques are just as trustworthy as in-vivo animal models when it comes to precisely predicting the actions of drugs. These substitute techniques also have a number of benefits over using animals in experiments. Given that up to 90% of clinical trials fail, there is rising ethical concern over the use of excessive animals in drug research and development. The non-animal models described in this article have the potential to accelerate the medication delivery process at a faster pace. This review provides researchers and readers who are not aware of about predictive in- silico techniques a basic knowledge of the underlying theory. New advancements, software, acceptability hurdles, integrated techniques, and current applications are all covered, with links to more resources provided for each area. Furthermore, these alternative methods offer a variety of advantages over experimental animals.


Cite this article:
Deepshikha Verma, K.P. Namdeo. A Comprehensive Review on Redundancy usage of Animal models in Novel Drug testing. Research Journal of Pharmacy and Technology.2024; 17(8):4097-2. doi: 10.52711/0974-360X.2024.00635

Cite(Electronic):
Deepshikha Verma, K.P. Namdeo. A Comprehensive Review on Redundancy usage of Animal models in Novel Drug testing. Research Journal of Pharmacy and Technology.2024; 17(8):4097-2. doi: 10.52711/0974-360X.2024.00635   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-83


REFRENCES:
1.    Artal-Sanz M., de Jong L., Tavernarakis N. Caenorhabditis elegans: a versatile platform for drug discovery. Biotech. J. 2006; 1: 1405–1418.  
2.    Balls M. Replacement of animal procedures: alternatives in research, education and testing. Lab. Anim. 1994; 28: 193–211.  
3.    Balls M. Future improvements: replacement in vitro methods. ILAR J. 2002;43:S69–S73.  
4.    Barr M.M. Super models. Physiol. Genomics. 2003; 13: 15–24.  
5.    Baumans V. Science-based assessment of animal welfare: laboratory animals. Revue Scientifique et Tech. 2005; 24: 503.  
6.    Beckingham K.M., Armstrong J.D., Texada M.J., Munjaal R., Baker D.A. Drosophila melanogaster: The model organism of choice for the complex biology of multi-cellular organisms. Gravit. Space Biol. Bull. 2005; 18: 17–29.  
7.    Bonini N.M., Fortini M.E. Human neurodegenerative disease modeling using Drosophila. Ann. Rev. Neurosci. 2003; 26: 627–656.  
8.    Committee on use of laboratory animals in biomedical and behavioral research, national research council and institute of medicine, 1988. Use of laboratory animals in biomedical and behavioral research. National Academy Press, Washington, DC
9.    De Silva O., Basketter D.A., Barratt M.D., Corsini E., Cronin M.T., Das P.K., Ponec M. Alternative methods for skin sensitization testing. Atla Nottingham. 1996; 24: 683–706.
10.    Dewhurst D.G., Hardcastle J., Hardcastle P.T., Stuart E. Comparison of a computer simulation program and a traditional laboratory practical class for teaching the principles of intestinal absorption. Am. J. Physiol. 1994; 267: S95–S104.
11.    Faber P.W., Alter J.R., MacDonald M.E., Hart A.C. Polyglutamine-mediated dysfunction and apoptotic death of a Caenorhabditis elegans sensory neuron. Proc. Natl. Acad. Sci. 1999;96:179–184.
12.    Foreman D.M., Pancholi S., Jarvis-Evans J., McLeod D., Boulton M.E. A simple organ culture model for assessing the effects of growth factor on corneal re-epitheliazation. Exp. Eye Res. 1996; 62: 555–564.
13.    Giacomotto J., Segalat L. High-throughput screening and small animal models, where are we? Br. J. Pharmacol. 2010; 160: 204–216.
14.    Gilbert L.I. Drosophila is an inclusive model for human diseases, growth and development. Mol. Cell Endocrinol. 2008; 293: 25–31.
15.    Gipson I., Sugrue S. Cell biology of the corneal epithelium. In: Albert D., Jakobiec F., editors. Principles and Practice of Ophthalmology. Saunders WB; Philadelphia: 1994. 4 –16.
16.    Hendriksen C.F. Three Rs achievements in vaccinology. AATEX. 2007; 14: 575–579.
17.    Hendriksen C.F. Replacement, reduction and refinement alternatives to animal use in vaccine potency measurement. Expert Rev. Vaccines. 2009;8:313–322.
18.    Hill A.J., Teraoka H., Heideman W., Peterson R.E. Zebra fish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 2005; 86: 6–19.
19.    Iijima K., Iijima-Ando K. Drosophila models of Alzheimer’s amyloidosis: The challenge of dissecting the complex mechanisms of toxicity of amyloid-beta 42. J. Alzheimers Dis. 2008; 15: 523–540.
20.    Iijima K., Liu H.P., Chiang A.S., Hearn S.A., Konsolaki M., Zhong Y. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc. Natl. Acad. Sci. 2004; 101: 6623–6628.
21.    Kimber I., Pichowski J.S., Betts C.J., Cumberbatch M., Basketter D.A., Dearman R.J. Alternative approaches to the identification and characterization of chemical allergens. Toxicol. In Vitro. 2001; 15: 307–312.
22.    Knight A., Bailey J., Balcombe J. Animal carcinogenicity studies: alternatives to the bioassay. Atla Nottingham. 2006; 34:39.
23.    Lagadic L., Caquet T. Invertebrates in testing of environmental chemicals: are they alternatives? Environ. Health Perspect. 1998; 106: 593.
24.    Link C.D., Johnson C.J., Fonte V., Paupard M., Hall D.H., Styren S., Mathis C.A., Klunk W.E. Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol. Aging. 2001; 22: 217–226.
25.    Madeo F., Engelhardt S., Herker E., Lehmann N., Maldener C., Proksch A., Frohlich K.U. Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr. Genet. 2002; 41: 208–216.
26.    Matthews E.J., Contrera J.F. A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASE QSAR-ES software. Regul. Toxicol. Pharmacol. 1998; 28: 242–264.
27.    Mell J.C., Burgess S.M. Encyclopedia of Life Sciences. Mcmillan Publishers Ltd.; 2002. Yeast as a model genetic organism.
28.    Nass R., Merchant K.M., Ryan T. Caenorhabditis elegans in Parkinson’s disease drug discovery: addressing an unmet medical need. Mol. Intervention. 2008; 8: 284–293.
29.    Pandey U.B., Nichols C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 2011; 63: 411–436.
30.    Pereira C., Bessa C., Soares J., Leão M., Saraiva L. Contribution of yeast models to neurodegeneration research. J. Biomed. Biotech. 2012
31.    Peterson R.T., Nass R., Boyd W.A., Freedman J.H., Dong K., Narahashi T. Use of non-mammalian alternative models for neurotoxicological study. Neurotoxicology. 2008; 29: 546–555.
32.    Pujol N., Cypowyj S., Ziegler K., Millet A., Astrain A., Goncharov A., Jin Y., Chisholm A.D., Ewbank J.J. Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr. Biol. 2008; 18: 481–489.
33.    Ranganatha N., Kuppast I.J. A review on alternatives to animal testing methods in drug development. Int. J. Pharm. Pharm. Sci. 2012;4:28–32.
34.    Reiter L.T., Potocki L., Chien S., Gribskov M., Bier E. A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res. 2001; 11: 1114–1125.
35.    Rollin B.E. Toxicology and new social ethics for animals. Toxicol. Pathol. 2003; 31: 128–131.
36.    Rothenfluh A., Heberlein U. Drugs, flies, and videotape: the effects of ethanol and cocaine on Drosophila locomotion. Curr. Opin. Neurobiol. 2002;12:639–645.
37.    Rusche B. The 3 Rs and animal welfare-conflict or the way forward. ALTEX. 2003; 20: 63–76.
38.    Russell W.M.S. and Burch R.L., The principles of humane experimental technique, 1959, London, UK.
39.    Shay J.W., Wright W.E. The use of telomerized cells for tissue engineering. Nat. Biotech. 2000; 18: 22–23.
40.    Siggers K.A., Lesser C.F. The yeast Saccharomyces cerevisiae: a versatile model system for the identification and characterization of bacterial virulence proteins. Cell Host Microbe. 2008; 4: 8–15.
41.    Steinhoff G., Stock U., Karim N., Mertschin H., Timke A., Meliss R.R., Bader A. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits in vivo restoration of valve tissue. Circulation. 2000; 102: Iii50–Iii55.
42.    Strange K. Revisiting the Krogh principle in the post-genome era: Caenorhabditis elegans as a model system for integrative physiology research. J. Exp. Biol. 2007; 210: 1622–1631.
43.    Vedani A. Computer-aided drug design: an alternative to animal testing in the pharmacological screening. ALTEX. 1991; 8: 39.
44.    Wilson-Sanders S.E. Invertebrate models for biomedical research, testing, and education. ILAR J. 2011; 52: 126–152.  
45.    Wolf M.J., Rockman H.A. Drosophila melanogaster as a model system for genetics of postnatal cardiac function. Drug Dis. Today Dis. Models. 2008; 5: 117–123.  
46.    Xu K.P., Li X.F., Fu-Shin X.Y. Corneal organ culture model for assessing epithelial responses to surfactants. Toxicol. Sci. 2000; 58: 306–314.
47.    Zurlo J., Rudacille D., Goldberg A.M. The three Rs: the way forward. Environ. Health Perspect. 1996;104:878.  
48.    Hutchinson I, Owen C, Bailey J. Modernizing Medical Research to Benefit People and Animals. Animals 2022; 12:1173
49.    Bédard P, Gauvin S, Ferland K, Caneparo C, Pellerin È, Chabaud S, et al. Innovative human three-dimensional tissue-engineered models as an alternative to animal testing. Bioengineering (Basel) 2020; 7: 115. doi: 10.3390/bioengineering7030115
50.    Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8: 267–95
51.    Lin Z, Chou WC. Machine learning and artificial intelligence in toxicological sciences. Toxicol Sci 2022; 189: 7–19

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available