Author(s):
Oumaima Ninich, Elmostafa El Fahime, Badr Satrani, Mohamed Ouajdi, Khalid El younssi, Sylvain Burri, Ismail Ettaleb, Oussama Chauiyakh, Samar Aarabi, Aziz Ettahir
Email(s):
oumaima_ninich@um5.ac.ma
DOI:
10.52711/0974-360X.2024.00608
Address:
Oumaima Ninich1*, Elmostafa El Fahime2, Badr Satrani3, Mohamed Ouajdi3, Khalid El younssi4, Sylvain Burri5, Ismail Ettaleb3, Oussama Chauiyakh1, Samar Aarabi1, Aziz Ettahir1
1Materials, Energy, Acoustics Team, Ecole Supérieure de Technologie – Salé, Mohammed V University, Rabat, Morocco.
2National Center for Scientific and Technical Research, Morocco.
3Chemistry and Microbiology laboratories, Silviculture and Forest Health Service, Forest Research Center, Avenue Omar Ibn El Khattab, B.P 763, Rabat Agdal, 10050, Morocco.
4Biomasse Laboratory Wood Technology and Forest Products Service, Forest Research Center, Morocco.
5TRACES UMR 5608, CNRS-Université Toulouse Jean Jaurès, Toulouse, France.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
This research examines the properties of wood tars in Morocco, including yield, pH, and density. The investigation involved pyrolysis processes using 1200 grams of wood. Cedar wood yielded 65% tar, while juniper yielded 38%. pH analyses revealed acidity levels in the tar. Commercial liquid wood tar had pH values ranging from 2.507±0.259 to 4.403±0.256, and commercial thick wood tar ranged from 2.963±0.441 to 4.393±0.121. Cedrus atlantica exhibited average pH values of 1.280±0.020 for artisanal wood tar samples and 2.297±0.025 for laboratory samples. Juniperus oxycedrus displayed pH values of 3.500±0.072 for artisanal samples and 1.913±0.042 for laboratory samples. Density variations were observed in liquid wood tar samples, which ranged from 0.775±0.019 to 1.069±0.084, and in thick wood tar samples, which ranged from 0.837±0.167 to 1.195±0. Artisanal cedar tar had a density of 0.906±0.023, while laboratory cedar tar had a density of 0.966±0.002. For Juniperus oxycedrus, artisanal wood tar exhibited a density of 1.179±0.017, and laboratory wood tar had a density of 1.081±0.004. Despite the insights gained from this study, it emphasizes the necessity for further investigation into the properties of wood tar to enhance our understanding of this natural product, which has been integral to human practices for centuries.
Cite this article:
Oumaima Ninich, Elmostafa El Fahime, Badr Satrani, Mohamed Ouajdi, Khalid El younssi, Sylvain Burri, Ismail Ettaleb, Oussama Chauiyakh, Samar Aarabi, Aziz Ettahir. Wood Tar Properties in Morocco: Yield, pH, and Density Analysis. Research Journal of Pharmacy and Technology. 2024; 17(8):3920-8. doi: 10.52711/0974-360X.2024.00608
Cite(Electronic):
Oumaima Ninich, Elmostafa El Fahime, Badr Satrani, Mohamed Ouajdi, Khalid El younssi, Sylvain Burri, Ismail Ettaleb, Oussama Chauiyakh, Samar Aarabi, Aziz Ettahir. Wood Tar Properties in Morocco: Yield, pH, and Density Analysis. Research Journal of Pharmacy and Technology. 2024; 17(8):3920-8. doi: 10.52711/0974-360X.2024.00608 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-56
REFERENCES:
1. Namrta Choudhary, M.B. Siddiqui, Sayyada Khatoon. Variation in Extract Yield in Different Parts of Tinospora cordifolia. Res J Pharmacol Pharmacodyn. 2014; 6(1): 1–4.
2. Profile SEE. Medicinal Plants Used In Traditional Treatment of Hypertension in Turkey. Int J Sci Technol Res. 2020; (March). https://doi.org/10.7176/jstr/6-03-11
3. Sundar RD V., Settu S, Shankar S, Segaran G, Sathiavelu M. Potential Medicinal Plants to Treat Leprosy-A Review. Res J Pharm Technol. 2018; 11(2): 813–821. https://doi.org/10.5958/ 0974-360X.2018.00153.1
4. Ari S, Kargioǧlu M, Temel M, Konuk M. Traditional Tar Production from the Anatolian Black Pine [Pinus nigra Arn. subsp. pallasiana (Lamb.) Holmboe var. pallasiana] and its usages in Afyonkarahisar, Central Western Turkey. J Ethnobiol Ethnomed. 2014; 10(1): 1–9. https://doi.org/10.1186/1746-4269-10-29
5. Kurt Y, Isik K. Comparison of tar produced by traditional and laboratory methods. Stud Ethno-Medicine. 2012; 6(2): 77–83. https://doi.org/10.1080/09735070.2012.11886423
6. Kurt Y, Suleyman Kaçar M, Isik K. Traditional tar production from Cedrus libani A. Rich on the Taurus Mountains in southern Turkey. Econ Bot. 2008; 62(4): 615–620. https://doi.org/10.1007/s12231-008-9023-x
7. Burri S, Alifriqui M, Bun S-S, et al. Des ressources naturelles à la santé : Approche interdisciplinaire de la production des goudrons de conifères et de leur usage médicinal en Méditerranée sur la longue durée. Les Nouv l’archéologie. 2018: 62–69. https://doi.org/10.4000/nda.4267
8. Ninich O, Et-tahir A, Kettani K, et al. Plant sources, techniques of production and uses of tar: A review. J Ethnopharmacol. 2022; 285(11): 114889. https://doi.org/10.1016/j.jep.2021.114889
9. Chauiyakh O, Fahime E El, Aarabi S, Ninich O. REVIEW ARTICLE A Systematic Review on Chemical Composition and Biological Activities of cedar Oils and Extracts. 2023; 16(August): 3875–3883. https://doi.org/10.52711/0974-360X.2023.00639
10. Koller J, Baumer U, Kaup Y, Schmid M, Weser U. Ancient materials: analysis of a pharaonic embalming tar. Nature. 2003; 425(6960): 784. https://doi.org/https://doi.org/10.1038/425784a
11. Ninich O, Fahime E El, Tiskar M, et al. Cedar tar as a green corrosion inhibitor for E24 steel in 1 M HCl solution: A comparative analysis of uncleaned and cleaned cedar tar. Int J Corros Scale Inhib. 2023; 12(4): 2142–2170. https://doi.org/ 10.17675/2305-6894-2023-12-4-38
12. Julin M. Tar production–traditional medicine and potential threat to biodiversity in the Marrakesh region. An ethnobotanical study. Uppsala University; 2008
13. Lindborg M. GC-MS analysis for Polyaromatic Hydrocarbons (PAH) in Moroccan medicinal tars. Uppsala University: Committee of Tropcial Ecology; 2009
14. Ramadass M, Thiagarajan P. Importance and applications of cedar oil. Res. J. Pharm. Technol. 2015; 8(12): 1714–1718. https://doi.org/10.5958/0974-360X.2015.00308.X
15. Bajes HR, Oran SA, Bustanji YK. Chemical Composition and Antiproliferative and Antioxidant Activities of Essential Oil from Juniperus phoenicea L. Cupressaceae. Res J Pharm Technol. 2022; 15(1): 153–159. https://doi.org/10.52711/0974-360X.2022.00025
16. Mahcene Z, Mahcene Z, Bireche K, Serdouk F. Socioeconomic valorization and development of a bio-fungicide from essential oils of four Algerian aromatic and medicinal plants: Artemisia herba alba Asso, Mentha pulegium L, Rosmarinus officinalis L and Ocimum basilicum L. Asian J Res Chem. 2020; 13(6): 473–484. https://doi.org/10.5958/0974-4150.2020.00084.x
17. Labiad H, Aljaiyash A, Ghanmi M, et al. Exploring the provenance effect on Chemical composition and Pharmacological bioactivity of the Moroccan essential oils of Laurus nobilis. Res J Pharm Technol. 2020; 13(9): 4067–4076. https://doi.org/10.5958/ 0974-360X.2020.00719.2
18. Joshi, R.K.; Joshi, B.C.; Sati MK. Chemical and chemotaxonomic aspects of some aromatic and medicinal plants species from Utrrakhand: a review. Asian J Pharm Technol. 2014; 4(3): 157–162.
19. Ninich O, El Fahime E, Satrani B, et al. Comparative Chemical and Biological Analysis of Wood and Tar Essential Oils from Cedrus atlantica and Juniperus oxycedrus in Morocco. Trop J Nat Prod Res. 2024; 8(3): 6570–6581. https://doi.org/10.26538/tjnpr/ v8i3.15
20. Ninich O, Et-tahir A, Kettani K, et al. Ethnobotanical knowledge of Moroccans about medicinal Tar. Trop J Nat Prod Res. 2022; 6(3): 317–329.
21. Rocha de Castro DA, da Silva Ribeiro HJ, Hamoy Guerreiro LH, et al. Production of fuel-like fractions by fractional distillation of bio-oil from açaí (Euterpe oleracea mart.) seeds pyrolysis. Energies. 2021; 14(13): 1–27. https://doi.org/10.3390/en14133713
22. International Organization for Standardization. ISO 279: 1998. Essential oils — Determination of relative density at 20 degrees C — Reference method. 1998.
23. Larbi B. Contribution à l’étude de Fusarium oxysporum f sp albedinis agent causal de la fusariose vasculaire du palmier dattier et moyens de lutte. Université Abdelhamid Ibn Badis De Mostaganem: Faculté des Sciences de la Nature et de la Vie,; 2019.
24. Gavarkar P, Adnaik R, Chavan D, Bagkar A, Bandgar R. Physicochemical investigation of some marketed herbal hair oil. Res. J. Top. Cosmet. Sci. 2016; 7(2): 70. https://doi.org/10.5958/ 2321-5844.2016.00011.x.
25. Donnot A. Craquage catalytique de goudron de pyrolyse du bois. Université Henri Poincaré - Nancy 1, 1989; 1989.
26. Ministère de l’Agriculture de la Pêche Maritime du Développement Rural et des Eaux et Forêts. Bilan d’activités Département des Eaux et Forêts Contrats Programmes 2018. 2018
27. Bellakhdar J. Contribution à l’étude de la pharmacopée traditionnelle au Maroc: la situation actuelle, les produits, les sources du savoir (enquête ethnopharmacologique de terrain réalisée de 1969 à 1992) TOME I. Université Paul Verlaine-Metz; 1997.
28. El Jemli M. Contribution à l’étude ethnobotanique, toxicologique, pharmacologique et phytochimique de quatre Cupressacées marocaines : Juniperus thurifera L., Juniperus oxycedrus L., Juniperus phoenicea L. et Tetraclinis articulata L. Université Mohammed V, Rabat; 2020.
29. Takci HAM, Turkmen FU, Sari M. In vitro mutagenic effect of cedar (Cedrus libani A. Rich) tar in the salmonella/microsome assay system. Banat J Biotechnol. 2019; X(November): 4738–12. https://doi.org/10.7904/2068.
30. Belliot A. Huile de cade, goudron de houille, ichthyol : utilisations dermatologiques et cosmétiques. Nantes; 2007.
31. Baker E, Brown M, Elliott DC, Mudge L. Characterization and treatment of tars from biomass gasifiers. AIChE 1988 Summer Natl Meet. 1988; 11.
32. Derriche R, Messaoudi S, Lahouazi N, Les R. Teneur en Polyphénols et Activité Antioxydante des Huiles Essentielles, Hydrolats et Extraits des Feuilles de l ’ Inulaviscosa (L .) Aiton d’ Algérie. 2015.
33. Aiboud A. Caractérisation phytochimique et étude de l’action antidermatophytique in vitro et in vivo du goudron de Cedrus atlantica, Nicotiana tabacum et Allium sativum L. Université Ibn Tofail; 2016.
34. Larbi B, Tahri U, Bechar M De, Ahmed M, Mebarki L. Analyse physico-chimique des goudrons végétaux commercialisés du sud ouest Algérien, et essai de leurs estimation de leurs activités antimicrobiennes. Int Agric Biotechnol Conf. Vol. 1. Bizerte Tunisia: 2015.
35. Terfaya B, Makhloufi A, Mekboul A, Benlarbi L, Abdelouahed D. Antifungal Activity of Juniperus oxycedrus Tar ; Growing Wild in North-west of Algeria. Appl Biol Sahar Areas. 2019; 1(January): 33–36.
36. Yadav AR, Mohite SK. Green chemistry approach for microwave assisted synthesis of some traditional reactions. Asian J Res Chem. 2020; 13(4): 261. https://doi.org/10.5958/0974-4150.2020.00051.6.
37. Mezouari A, Makhloufi A, Bendjima K, et al. Antifungal activity of Acacia tortilis subsp. raddiana tar on Fusarium oxysporum f.sp. albedinis, the cause of Bayoud disease of the date palm in Southwest Algeria. Indian J Agric Res. 2019; 53(6): 713–717. https://doi.org/10.18805/IJARe.A-417.
38. Bendjima K, Makhloufi A, Mezouari A, Makhloufi K. Antifungal activity of Olea europaea subsp. sylvestris tar against Fusari-um oxysporum f. sp. albedinis, the causal agent of Bayoud of the date palm in Southwest Algeria. South Asian J Exp Biol. 2020; 10(2). https://doi.org/10.38150/sajeb.10(2).p90-94.
39. Naryanto RF, Enomoto H, Cong AVAV, et al. The effect of moisture content on the tar characteristic of wood pellet feedstock in a downdraft gasifier. Appl Sci. 2020; 10(8). https://doi.org/ 10.3390/APP10082760.