Author(s): Freshinta Jellia Wibisono, Dyah Ayu Widiasih, Hung Nguyen-Viet

Email(s): dyahaw@ugm.ac.id

DOI: 10.52711/0974-360X.2024.00598   

Address: Freshinta Jellia Wibisono1, Dyah Ayu Widiasih2*, Hung Nguyen-Viet3
1Department of Veterinary Public Health, Faculty of Veterinary Medicine, Wijaya Kusuma Surabaya University, Surabaya, Indonesia.
2Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia.
3International Livestock Research Institute, Nairobi, Kenya.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Multidrug resistance poses a global health risk to humans, animals, and the environment.The impact of this issue is so great that it has gained international attention, ranging from the rising morbidity to the mortality rate of infectious diseases in humans and animals. Because of their peculiar eliminative behavior habit of burying their waste in the ground, cats may contribute to the spread of microorganisms resistant to antibiotics. The purpose of this study was to map the prevalence of antibiotic-resistant E. coli bacteria in cats and to determine the degree of cat owners' comprehension as a risk factor for the development of antimicrobial resistance. In this investigation, 353 cat anal swab samples were found to contain E. coli. The study was carried out in 2023 between March and May. The Mueller Hilton Agar medium was used to test for multidrug resistance to beta-lactam, aminoglycoside, and tetracycline class antibiotics using the diffusion method. Using a questionnaire, the degree of knowledge on antibiotic resistance among 373 cat owners was assessed. Respondent variables include identification, knowledge, demeanor, attitude, and cat care. After that, data were descriptively examined. E. coli was detected in 87.82% (310/353) of the cat anal swab samples (n = 353) in this investigation. Additionally, multidrug resistance was shown in 7.4% (23/310) of the isolates; this frequency was higher in stray cats (8.75%) than in domestic cats (6%). For ampicillin, tetracycline, and streptomycin, the rates of antimicrobial resistance were 28.39% (88/310), 15.81% (49/310), and 14.84% (46/310), in that order. According to an analysis of the questionnaires used to gauge cat owners' comprehension of antimicrobial-resistant events, 64.3% (240/373) of the owners did not know what antimicrobial resistance was. In addition, 72.7% (271/373) of the cat owners were aware of the medications their cats were given, and 66% (246/373) of them knew how to give antibiotics to their pets. These findings are consistent with the findings of another survey that showed 70% (261/373) of cat owners took their sick cats to the veterinarian. Compared to domestic cats, stray cats in this study had a higher rate of multidrug resistance.This is consistent with the relatively positive findings of a survey on cat owners' comprehension of cat maintenance and care; yet, the poor awareness of antimicrobial resistance among cat owners may contribute to its emergence. To raise awareness regarding antimicrobial resistance in cats, cat owners need to get education.


Cite this article:
Freshinta Jellia Wibisono, Dyah Ayu Widiasih, Hung Nguyen-Viet. Multidrug Resistance of Escherichia coli in cats and the Level of Understanding of Cat Owners on Antimicrobial Resistance. Research Journal of Pharmacy and Technology. 2024; 17(8):3855-2. doi: 10.52711/0974-360X.2024.00598

Cite(Electronic):
Freshinta Jellia Wibisono, Dyah Ayu Widiasih, Hung Nguyen-Viet. Multidrug Resistance of Escherichia coli in cats and the Level of Understanding of Cat Owners on Antimicrobial Resistance. Research Journal of Pharmacy and Technology. 2024; 17(8):3855-2. doi: 10.52711/0974-360X.2024.00598   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-46


REFERENCES:
1.    Sharma SK, Galav V, Agrawal M, Faridi FN, Kumar B. Multidrug Resistance Pattern of Bacterial Flora Obtained from Necropsy Samples of Poultry.  Journal of Animal Health and Production. 2017; 5(4): 165–71. doi: http://dx.doi.org/10.17582/journal.jahp/2017/5.4.165.171
2.    Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. Antimicrobial resistance in Escherichia coli from poultry production on Blitar, Indonesia. Indian Journal of Forensic Medicine and Toxicology. 2020; 14(4): 4131–6. doi: 10.37506/ijfmt.v14i4.12288
3.    Effendi MH, Tyasningsih W, Yurianti YA, Rahmahani J, Harijani N, Plumeriastuti H. Presence of multidrug resistance (MDR) and extended-spectrum beta-lactamase (ESBL) of Escherichia coli isolated from cloacal swabs of broilers in several wet markets in Surabaya, Indonesia. Biodiversitas. 2021; 22(1): 304–10. doi: 10.13057/biodiv/d220137
4.    Suhartono S, Hayati Z, Hayatunnida R. Distribution of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Isolates among clinical specimens in the Zainoel Abidin General Hospital, Banda Aceh, Indonesia. Research Journal of Pharmacy and Technology. 2023; 16(6): 2854–8. doi: 10.52711/0974-360X.2023.00470
5.    Mandal AK, Talukder S, Hasan MM, Tasmim ST, Parvin MS, Ali MY, Islam MT. Epidemiology and antimicrobial resistance of Escherichia coli in broiler chickens, farm workers, and farm sewage in Bangladesh. Veterinary Medicine and Science. 2022; 8(1): 187–99. doi: 10.1002/vms3.664
6.    Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. Short Communication: The presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli on layer chicken farms in Blitar Area, Indonesia. Biodiversitas. 2020; 21(6): 2667–71. doi: 10.13057/biodiv/d210638
7.    Wibisono FJ, Effendi MH, Wibisono FM. Occurrence, antimicrobial resistance, and potential zoonosis risk of avian pathogenic Escherichia coli in Indonesia: A review. International Journal of One Health. 2022; 8(2): 21–3. doi: 10.14202/IJOH.2022.76-85
8.    Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A Review on Antibiotic Resistance: Alarm Bells are Ringing. Cureus, 2017;9(6):1–9 doi: 10.7759/cureus.1403
9.    Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar, SK, Côté C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition. 2018; 4(2): 170–8. doi: 10.1016/j.aninu.2018.03.002
10.    Tian M, He X, Feng Y, Wang W, Chen H, Gong M, Liu D, Clarke JL, Van Eerde A Pollution by antibiotics and antimicrobial resistance in livestock and poultry manure in China, and countermeasures. Antibiotics. 2021; 10(5): 1–16. doi:  10.3390/antibiotics10050539
11.    Ramalingam AJ. History of Antibiotics and Evolution of Resistance. Research Journal of Pharmacy and Technology. 2015; 8(12): 1719–24. doi: 10.5958/0974-360X.2015.00309.1
12.    Sreeja MK, Gowrishankar NL, Adisha S, Divya KC. Antibiotic Resistance-Reasons and the Most Common Resistant Pathogens – A Review. Research Journal of Pharmacy and Technology. 2017; 10(6): 1886–90. doi: 10.5958/0974-360X.2017.00331.6
13.    Adebowale O, Makanjuola M, Bankole N, Olasoju M, Alamu A, Kperegbeyi E, Oladejo O, Fasanmi O, Adeyemo O, Fasina FO. Multidrug Resistant Escherichia coli, Biosecurity and Antimicrobial Use in Live Bird Markets, Abeokuta, Nigeria. Antibiotics. 2022; 11(2): 1–23. doi: 10.3390/antibiotics11020253
14.    Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. Prevalence and Risk Factors Analysis of Multidrug Resistance of Escherichia coli Bacteria in Commercial Chicken, Blitar District. Journal of Tropical Animal and Veterinary Science. 2020; 10(1): 15–22. doi: 10.46549/jipvet.v10i1.7418.    
15.    Desai SM, Undale VR. Antibiotic Overuse and Resistance: An Awareness Study. Research Journal of Pharmacy and Technology. 2019; 12(6): 2794–8. doi: 10.5958/0974-360x.2019.00470.0
16.    Maria, JD, Aanandhi MV. An overview on antibiotic use and resistance. Research Journal of Pharmacy and Technology. 2017; 10(8): 2793–6. doi: 10.5958/0974-360X.2017.00494.2
17.    Rajan AK, Jeyamani SVP, Lavanya R, Kaviya U, Joan M. Assessment of Antibiotic Sensitivity Patterns in A Primary Care Hospital. Research Journal of Pharmacy and Technology. 2018; 11(8): 3411–4. doi: 10.5958/0974-360X.2018.00628.5
18.    Falgenhauer L, Imirzalioglu C, Oppong K, Akenten CW, Hogan B, Krumkamp R, Poppert S, Levermann V, Schwengers O, Sarpong N, Owusu-Dabo E, May J, Eibach D. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Frontiers in Microbiology. 2019; 10(JAN): 1–8. doi: 10.3389/fmicb.2018.03358
19.    Niveditha S, Umamageswari SSM, Aruna D Kalyani M. Study of hand carriage of multi drug resistant bacteria using glove juice technique in health care workers. Research Journal of Pharmacy and Technology. 2021; 14(2): 650–6. doi: 10.5958/0974-360X.2021.00116.5
20.    Wibisono FM, Faridah HD, Wibisono FJ, Tyasningsih W, Effendi MH, Witaningrum AM, Ugbo EN. Detection of invA virulence gene of multidrug-resistant Salmonella sp. Isolated from the cloacal swab of broiler chickens in Blitar district, East Java, Indonesia. Veterinary World. 2021; 14(12): 3126–31. doi: 10.14202/vetworld.2021.3126-3131
21.    Saha O, Islam MR, Rahman MS, Hoque MN, Hossain MA, Sultana M. First report from Bangladesh on genetic diversity of multidrug-resistant Pasteurella multocida type B:2 in fowl cholera. Veterinary World. 2021; 14(9): 2527–42. doi: 10.14202/vetworld.2021.2527-2542
22.    Majewski M, Józefiak A, Kimsa-Furdzik M, Dziubdziela L, Hudak-Nowak M, Wilczyński J, Anusz K. Antimicrobial resistance of Escherichia coli and Klebsiella spp. Conventionally sampled from factory-farmed chickens – clinical submissions. Annals of Agricultural and Environmental Medicine. 2021; 28(2): 271–6. doi: 10.26444/aaem/120927
23.    Widhi APKN, Saputra INY. Antibiotic Residues and the Presence of Escherichia coli that produce ESBL in Broiler Chicken at Purwokerto City Market. Jurnal Kesehatan Lingkungan Indonesia. 2021; 20(2): 137–42. doi: 10.14710/jkli.20.2.137-142
24.    Rau RB, Ribeiro AR, Dos Santos A, Barth AL. Antimicrobial resistance of Salmonella from poultry meat in Brazil: results of a nationwide survey. Epidemiology and Infection. 2021; 149: 26–39. doi: 10.1017/S0950268821002156
25.    Silva V, Caniça M, Ferreira E, Vieira-Pinto M, Saraiva C, Pereira JE, Capelo JL, Igrejas G, Poeta P. Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Poultry Slaughtered for Human Consumption. Antibiotics. 2022; 11(365): 1–11. doi: 10.1038/259008c0
26.    Gumpert H, Kubicek-sutherland JZ, Porse A, Karami N, Munck C, Linkevicius M, Adlerberth I, Wold AE, Andersson DI, Sommer MOA. Transfer and Persistence of a Multidrug Resistance Plasmid in situ of the Infant Gut Microbiota in the Absence of Antibiotic Treatment. Frontiers in Microbiology. 2017; 8(September): 1–10. doi: 10.3389/fmicb.2017.01852
27.    Suryadevara N, Yong KB, Ganapathy B, Subramonie S, Ragavan ND, Ramachandiran M, Shanmugam G, Ponmurugan P. Molecular characterization of Escherichia coli from chickens in poultry farms of Malaysia. Research Journal of Biotechnology. 2020; 15(10): 1–10.
28.    Abbas HA, Kadry AA, Shaker GH, Goda RM. Resistance of Escherichia coli and Klebsiella pneumoniae isolated from different Sources to β-lactam Antibiotics. Research Journal of Pharmacy and Technology. 2017; 10(2): 589–91. doi: 10.5958/0974-360x.2017.00116.0
29.    Mende PS, Pelealu J, Kolondam B. Molecular Identification of Bacteria in Cat (Felis domestica) feces grown on De Mann Rogosa Sharpe Agar (MRSA). Pharmacon. 2019; 8(1): 73–8. doi: 10.35799/pha.8.2019.29239
30.    Gomes VTM, Moreno LZ, Silva APS, Thakur S, Ragione RML, Mather AE, Moreno AM. Characterization of Salmonella enterica Contamination in Pork and Poultry Meat from São Paulo/Brazil: Serotypes, Genotypes, and Antimicrobial Resistance Profiles. Pathogens. 2022; 11(358): 1–13. doi: https://doi.org/10.3390/pathogens11030358
31.    Don Bamunusinghage NP, Arunika KKS, Abeynayake P, Kalupahana RS. Antimicrobial resistance patterns of faecal Escherichia coli and Salmonella in wild animals in eastern wildlife region of Sri Lanka. Sri Lanka Veterinary Journal. 2019; 66(2): 21–8. doi: 10.4038/slvj.v66i2.45
32.    Anima N, Dhamodharan S, Nayak BK. Antibiotic resistance pattern exhibited by Esbl (Extended spectrum β-lactamases) in multidrug resistant strains, Escherichia coli. Research Journal of Pharmacy and Technology. 2017; 10(11): 3705–8. doi: 10.5958/0974-360X.2017.00672.2
33.    Tan HS, Yan P, Agustie HA, Loh HS, Rayamajhi N, Fang CM. Characterisation of ESBL/AmpC-Producing Enterobacteriaceae isolated from poultry farms in Peninsular Malaysia. Letters in Applied Microbiology. 2023; 76(1): 1–10. doi: 10.1093/lambio/ovac044
34.    Tresha AO, Arif M, Islam SS, Haque AKMZ, Rahman MT, Kabir SML. Investigation of Clostridium perfringens in small-scale commercial broiler flocks in Mymensingh district of Bangladesh. Veterinary World. 2021; 14(10): 2809–16. doi: 10.14202/vetworld.2021.2809-2816
35.    El-Ghany WAA. Staphylococcus aureus in poultry, with special emphasis on methicillin-resistant strain infection: A comprehensive review from one health perspective. International Journal of One Health. 2021; 7(2): 257–67. doi: 10.14202/IJOH.2021.257-267
36.    Khairullah AR, Sudjarwo SA, Effendi MH, Ramandinianto SC, Gelolodo MA, Widodo A, Riwu KHP, Kurniawati DA. Pet animals as reservoirs for spreading methicillin-resistant Staphylococcus aureus to human health. Journal of Advanced Veterinary and Animal Research. 2023; 10(1): 1–13. doi: 10.5455/javar.2023.j641
37.    El-Waseif AA, Awad GS, El Maaty SAA, Hassan MG. Molecular characterization of Virulence genes Shiga-like, Heat-labile Toxins and Antibiotics resistance in multidrug-resistant Escherichia coli. Research Journal of Pharmacy and Technology. 2022; 15(7): 2957-61. doi: 10.52711/0974-360X.2022.00493
38.    Kittana H, Gomes-Neto JC, Heck K, Geis AL, Segura Muñoz RR, Cody LA, Schmaltz RJ, Bindels LB, Sinha R, Hostetter JM, Benson AK, Ramer-Tait AE. Commensal Escherichia coli Strains can promote intestinal inflammation via differential interleukin-6 production. Frontiers in Immunology. 2018; 9(Oct): 1–13. doi: 10.3389/fimmu.2018.02318
39.    Ramos S, Silva V, Dapkevicius ML, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β -Lactamase (ESBL) Production. Animals 2020; 10(2239): 2–15. doi: 10.3389/fimmu.2018.02318
40.    Permatasari DA, Witaningrum AM, Wibisono FJ, Effendi MH. Detection and prevalence of multidrug-resistant Klebsiella pneumoniae strains isolated from poultry farms in Blitar, Indonesia. Biodiversitas. 2020; 21(10): 4642–7. doi: 10.13057/biodiv/d211024
41.    Rafiq K, Islam MR, Siddiky NA, Samad MA, Chowdhury S, Hossain KMM, Rume FI, Hossain MK, Mahbub-E-Elahi ATM, Ali MZ, Rahman M, Amin MR, Masuduzzaman M, Ahmed S, Ara Rumi N, Hossain MT. Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics. 2022; 11(11): 1–16. doi: 10.3390/antibiotics11111551
42.    Putra AR, Effendi MH, Koesdarto S, Suwarno S, Tyasningsih W, Estoepangestie AT. Detection of the extended spectrum β-lactamase produced by escherichia coli from dairy cows by using the vitek-2 method in Tulungagung Regency, Indonesia. Iraqi Journal of Veterinary Sciences. 2020; 34(1): 203–207 (2020). doi: 10.33899/ijvs.2019.125707.1134
43.    Ansharieta R, Ramandinianto SC, Effendi MH, Plumeriastuti H. Molecular identification of blactx-m and blatem genes encoding extended-spectrum ß-lactamase (Esbl) producing escherichia coli isolated from raw cow’s milk in east java, indonesia. Biodiversitas. 2021; 22(4): 1600–1605 (2021). doi: 10.13057/biodiv/d220402
44.    Chen Y, Liu Z, Zhang Y, Zhang Z, Lei L, Xia Z. Increasing Prevalence of ESBL-Producing Multidrug Resistance Escherichia coli From Diseased Pets in Beijing, China From 2012 to 2017. Frontiers in Microbiology. 2019; 10(Desember): 1–12. doi: 10.3389/fmicb.2019.02852
45.    Awosile B, McClure T, Saab ME, Heider LC. Antimicrobial Resistance in Bacteria Isolated From Cats and Dogs From the Iberian Peninsula. Frontiers in Microbiology. 2021; 11(6). doi: 10.3389/fmicb.2020.621597
46.    Bushen A, Tekalign E, Abayneh M. Drug and multidrug-resistance pattern of enterobacteriaceae isolated from droppings of healthy chickens on a poultry farm in southwest Ethiopia. Infection and Drug Resistance. 2021; 14(june): 2051–2058. doi: 10.2147/IDR.S312185
47.    Gargano V, Gambino D, Orefice T, Cirincione R, Castelli G, Bruno F, Interrante P, Pizzo M, Spada E, Proverbio D, Vicari D, Salgado-Caxito M, Benavides JA, Cassata G. Can Stray Cats Be Reservoirs of Antimicrobial Resistance. Veterinary Sciences. 2022; 9(11): 1–8. doi: 10.3390/vetsci9110631
48.    Nhung NT, Cuong NV, Campbell J, Hoa NT, Bryant JE, Truc VNT, Kiet BT, Jombart T, Trung NV, Hien VB, Thwaites G, Baker S, Carrique-Mas J. High levels of antimicrobial resistance among Escherichia Coli isolates from livestock farms and synanthropic rats and shrews in the mekong delta of Vietnam. Applied and Environmental Microbiology, 2015; 81(3): 812–820. doi: 10.1128/AEM.03366-14
49.    Cummins ML, Reid CJ, Chowdhury PR, Bushell RN, Esbert N, Tivendale KA, Noormohammadi AH, Islam S, Marenda MS, Browning GF, Markham PF, Djordjevic SP. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microbial Genomics.  2019; 5(2). doi: 10.1099/mgen.0.000250
50.    Abraham S, O'Dea M, Sahibzada S, Hewson K, Pavic A, Veltman T, Abraham R, Harris T, Trott DJ, Jordan D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS One. 2019; 14(10): 1–12. doi: 10.1371/journal.pone.0224281
51.    Marchetti, L, Buldain D, Gortari Castillo L, Buchamer A, Chirino-Trejo M, Mestorino N. Pet and Stray Dogs as Reservoirs of Antimicrobial-Resistant Escherichia coli. International Journal of Microbiology. 2021; 2021: 1–8. doi: 10.1155/2021/6664557
52.    Widodo A, Lamid M, Effendi MH, Khailrullah AR, Kurniawan SC, Silaen OSM, Riwu KHP, Yustinasari LR, Afnani DA, Dameanti FNAEP, Ramandinianto SC. Antimicrobial resistance characteristics of multidrug resistance and extended-spectrum beta-lactamase producing Escherichia coli from several dairy farms in Probolinggo, Indonesia. Biodiversitas. 2023; 24(1): 215–221. doi: 10.13057/biodiv/d240126
53.    Wibisono FJ, Sumiarto B, Untari T, Effendi MH, Permatasari DA, Witaningrum AM. Antibiotic resistance profile of escherichia coli isolates collected from cloaca swabs on laying hens in udanawu sub-district, blitar district, indonesia. Ecology, Environment and Conservation. 2020; 26(november): S261–S264.
54.    Ngitung R. Characteristic Domestic Cat's Behaviour Patterns. Sainsmat : Jurnal Ilmiah Ilmu Pengetahuan Alam. 2021; 10(1): 78–84. doi: 10.35580/sainsmat101362152021
55.    Wei L, Yang C, Shao W, Sun T, Wang J, Zhou Z, Chen C, Zhu A, Pan Z. Prevalence and drug resistance of Salmonella in dogs and cats in Xuzhou, China. Journal of Veterinary Research (Poland). 2020; 64(2): 263–8. doi: 10.2478/jvetres-2020-0032
56.    Kristianingtyas L, Effendi MH, Witaningrum AM, Wardhana DK, Ugbo EN. Prevalence of extended-spectrum ß-lactamase-producing Escherichia coli in companion dogs in animal clinics, Surabaya, Indonesia. International Journal of One Health. 2021; 7(2): 232–6. doi:  10.14202/IJOH.2021.232-236
57.    Smith M, King C, Davis M, Dickson A, Park J, Smith F, Currie K, Flowers P. Pet owner and vet interactions: Exploring the drivers of AMR. Antimicrobial Resistance and Infection Control. 2018; 7(1): 1–9. doi: 10.1186/s13756-018-0341-1
58.    Dickson A, Smith M, Smith F, Park J, King C, Currie K, Langdridge D, Davis M, Flowers P. Understanding the relationship between pet owners and their companion animals as a key context for antimicrobial resistance-related behaviours: an interpretative phenomenological analysis. Health Psychology and Behavioral Medicine. 2019; 7(1): 45–61. doi: 10.1080/21642850.2019.1577738
59.    Candellone A, Badino P, Girolami F, Ala U, Mina F, Odore R. Dog Owners' Attitude toward Veterinary Antibiotic Use and Antibiotic Resistance with a Focus on Canine Diarrhea Management. Animals. 2023; 13(6): 1–14. doi: 10.3390/ani13061061
60.    Janke N, Stone EA, Coe JB, Dewey CE. Companion animal veterinarians discuss aspects of one health with pet owners during most veterinary appointments. Journal of the American Veterinary Medical Association. 2023; 261: 1–9. doi: 10.2460/javma.23.05.0287
61.    Mubarok F, Soliha AAA, Hidayati N. Studi living hadis street freding Surabaya. Universum urnal KeIslaman dan Kebudayaan. 2022; 16(2): 35–47.
62.    Cindy C, Arifin LS. Shelter for Stray Dogs and Cats in Surabaya. eDimensi Arsitektur Petra Journal. 2020; VIII(1): 785–92.
63.    Sasmita LD, Ramdhani S, Oktafiana B. Land Management Design in Animal Centers and Cat Shelters with a Bioclimatic Architecture Theme. In: Prosiding Seminar Nasional Sains dan Teknologi Terapan X, 2022; 1–7.
64.    Standar Nasional Indonesia. How to microbiological test - Part 1: Determination of coliforms and Escherichia coli in fishery products. National Standards Agency, Indonesian National Standards. SNI 2332.1:2015 Indonesia; 2015; 1–23.
65.    Clinical and Laboratory Standards Institute. M100 Performance Standards for Antimicrobial. 32th ed. USA: Clinical and Laboratory Standards Institute.2022.
66.    Damborg P, Top J, Hendrickx APA, Dawson S, Willems RJL, Guardabassi L. Dogs are a reservoir of ampicillin-resistant Enterococcus faecium lineages associated with human infections. Applied and Environmental Microbiology. 2009; 75(8): 2360–5. doi: 10.1128/AEM.02035-08
67.    Jackson CR, Fedorka-Cray PJ, Davis JA, Barrett JB, Frye JG. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. Journal of Applied Microbiology. 2009; 107(4): 1269–78. doi: 10.1111/j.1365-2672.2009.04310.x
68.    Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal. 2021; 19(6): 1-188. doi: 10.2903/j.efsa.2021.6651
69.    Sonola VS, Misinzo G, Matee MI. Occurrence of multidrug-resistant staphylococcus aureus among humans, rodents, chickens, and household soils in karatu, northern tanzania. International Journal of Environmental Research and Public Health. 2021; 18(16): 1-11. doi: 10.3390/ijerph18168496
70.    Samreen S, Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. Journal of Global Antimicrobial Resistance. 2021; 27(September): 101–11. doi: 10.1016/j.jgar.2021.08.001
71.    Saraiva MMS, Lim K, do Monte DFM, Givisiez PEN, Alves LBR, de Freitas Neto OC, Kariuki S, Júnior AB, de Oliveira CJB, Gebreyes WA. Antimicrobial resistance in the globalized food chain: a One Health perspective applied to the poultry industry. Brazilian Journal of Microbiology. 2022; 53(1): 465–86. doi: 10.1007/s42770-021-00635-8
72.    Agustin ALD, Ningtyas NSI. Resistance of Escherichia coli to Various Antibiotics of Cat Patients in Educational Veterinary Hospital, Mandalika University of Education. Media Kedokteran Hewan. 2022; 33(2): 63–71. doi: 10.20473/mkh.v33i2.2022.63-71
73.    Febrianti D, Agustin ALD, Ningtyas NSI. Detect Bacteria Escherichia coli in Broiler Chicken in Traditional Market Mataram City. Mandalika Veterinary Journal. 2022;33(1):1–12.
74.    Davies RH, Lawes JR, Wales AD. Raw diets for dogs and cats: a review, with particular reference to microbiological hazards. Journal of Small Animal Practice. 2019; 60(6): 329–39. doi: 10.1111/jsap.13000
75.    Gwenzi W, Chaukura N, Muisa-zikali N, Teta C, Musvuugwa T, Rzymski P, Abia ALK. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics. 2021; 10(68): 1–42. doi: 10.3390/antibiotics10010068
76.    Yaddi Y, Safika S, Pasaribu FH. Resistance Test Against Several Antibiotics in Escherichia coli Isolated from Cats at The Bogor City Veterinary Clinic. Jurnal Ilmu dan Teknologi Peternakan Tropis. 2020; 7(3): 203–10. doi: 10.33772/jitro.v7i3.13442
77.    Bourély C, Coeffic T, Caillon J, Thibaut S, Cazeau G, Jouy E, Jarrige N, Chauvin C, Madec JY, Haenni M, Leblond A, Gay E. Trends in antimicrobial resistance among Escherichia colidefined infections in humans and animals. Journal of Antimicrobial Chemotherapy. 2020; 75(6): 1525–9. doi: 10.1093/JAC/DKAA022
78.    Daehre K, Projahn M, Semmler T, Roesler U, Friese A. Extended-Spectrum Beta-Lactamase/AmpC Beta-Lactamase-Producing Enterobacteriaceae in Broiler Farms: Transmission Dynamics at Farm Level. Microbial Drug Resistance. 2018; 24(4): 511–58. doi: 10.1089/mdr.2017.0150
79.    Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiology. 2018; 4(3): 482–501. doi: 10.3934/microbiol.2018.3.482
80.    Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, Andrews JR, Saha SK, Saha S. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Neglected Tropical Diseases. 2021; 9; 13(11): 1–16. doi: 10.1371/journal.pntd.0007868
81.    Xiao X, Bai L, Wang S, Liu L, Qu X, Zhang J, Xiao Y, Tang B, Li Y, Yang H, Wang W. Chlorine Tolerance and Cross-Resistance to Antibiotics in Poultry-Associated Salmonella Isolates in China. Frontiers in Microbiology. 2022; 12(February): 1–11. doi: 10.3389/fmicb.2021.833743
82.    Laborda P, Sanz-García F, Ochoa-Sánchez LE, Gil-Gil T, Hernando-Amado S, Martínez JL. Wildlife and Antibiotic Resistance. Frontiers in Cellular and Infection Microbiology. 2022; 12(May): 1–8. doi: 10.3389/fcimb.2022.873989
83.    Pezzanite LM, Chow L, Strumpf A, Johnson V, Dow SW. Immune Activated Cellular Therapy for Drug Resistant Infections: Rationale, Mechanisms, and Implications for Veterinary Medicine. Veterinary Sciences. 2022; 9(11): 1–25. doi: 10.3390/vetsci9110610
84.    Tribudiman A, Rahmadi R, Fadhila M. The Role of Pet Attachments on the Happiness of Pet Owners in the City of Banjarmasin. Jurnal Al-Husna. 2014; 1(1): 60–77. doi: 10.18592/jah.v1i1.3509
85.    Nurlayli RK, Hidayati DS. Lonely Living Pet Owners Separate from The Family. Jurnal Ilmiah Psikologi Terapan. 2014; 2(1): 2071–9.
86.    Nurmalasari MD, Laksito AD. Android-Based Cat Disease Early Diagnostic Expert System Application with Forward Chaining Method. Infos Journal. 2020; 1(2): 17–22.  
87.    Ramadhan F, Latifah F. Designing a Community of Cat Lovers with the Web-Based Waterfall Method. Journal of Information System, Applied, Management, Accounting and Research. 2018; 2(4): 39–45.
88.    Maharani YR, Yuniarti N, Puspitasari I. Prevalence of Extended-Spectrum Beta-Lactamase Bacteria and Evaluation of Suitability of Definitive Antibiotics in Hospitalized Patients in RSUP Dr. Soeradji Tirtonegoro Klaten. Majalah Farmaseutik. 2021; 17(2): 167–165. doi: 10.22146/farmaseutik.v17i2.48199
89.    Anggraini W, Puspitasari MR, Atmaja RRD, Sugihantoro H. The Impact of Education Providing on the Level of Knowledge Outpatient Understanding about the Use of Antibiotics in Kanjuruhan Region General Hospital Malang Regency. Pharmaceutical Journal of Indonesia. 2020; 6(1): 6–11
90.    Jung WK, Shin S, Park YK, Noh SM, Shin SR, Yoo HS, Park SC, Park YH, Park KT. Distribution and antimicrobial resistance profiles of bacterial species in stray dogs, hospital-admitted dogs, and veterinary staff in South Korea. Preventive Veterinary Medicine. 2020; 184: 1–14. doi: 10.1016/j.prevetmed.2020.105151

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available