Author(s): M. Sudha, B.B.V. Sailaja, Ch. Jagadeesh, P. Surya Sunitha, M. Ramanaiah

Email(s): ramanaiahmalla4@gmail.com

DOI: 10.52711/0974-360X.2024.00594   

Address: M. Sudha1, B.B.V. Sailaja2, Ch. Jagadeesh3, P. Surya Sunitha4 and M. Ramanaiah5*
1Department of Humanities and Sciences, School of Engineering, Nalla Narasimha Reddy Education Society’s Group of Institutions Integrated Campus, Hyderabad - 500088, India.
2Department of Chemistry, Andhra University, Visakhapatnam - 530003, India.
3Department of Chemistry, Vignan’s Institute of Engineering for Women (A), Visakhapatnam-530046, India.
4Department of Chemistry, Government College for Women (A), Srikakulam - 532001, Andhra Pradesh, India.
5Department of Chemistry, Aditya Institute of Technology and Management, Tekkali - 532201, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
The main objectives of the present investigation are the formation analysis of metal-ligand complexes of L-Leucine with divalent calcium, magnesium, and zinc metal ions in various concentrations of sodium dodecyl sulphate (0.0, 0.5, 1.0, 1.5, 2.0, and 2.5 percent w/v). To also look into the impact of the concentration of negatively charged micelles, the parameters that were changed, and the possible chemical species of L-Leucine that interact with the metal ions that were being studied. The experiment was performed using pH meter at 303 K using NaCl to keep your ionic strength stable of 0.16mol dm-3 in the presence of anionic surfactant, sodium dodecyl sulphate (SDS). The determination of the correction factor was conducted via the computer program SCPHD. The computational software MINIQUAD75 is utilized to determine the stability constants of ligand-metal complexes through the analysis of titration data. Based on statistical features such as skewness, ?2, kurtosis, and crystallographic R-factor, the best fit to the complicated speciation was selected. The metal ions Ca (II), Mg (II), and Zn (II) formed complexes ML, ML2, and ML2H2 for Ca (II), and ML, ML2, and ML2H for Mg (II) and Zn (II) through the complexation of L-Leucine. In order to validate the accuracy of the final established model, deliberate defects were introduced into the relevant components.


Cite this article:
M. Sudha, B.B.V. Sailaja, Ch. Jagadeesh, P. Surya Sunitha, M. Ramanaiah. Influence of Sodium Dodecyl Sulfate Anionic Micelles on The Complex Equilibria of Divalent Metal Ions with L-Leucine Amino Acid. Research Journal of Pharmacy and Technology. 2024; 17(8):3829-5. doi: 10.52711/0974-360X.2024.00594

Cite(Electronic):
M. Sudha, B.B.V. Sailaja, Ch. Jagadeesh, P. Surya Sunitha, M. Ramanaiah. Influence of Sodium Dodecyl Sulfate Anionic Micelles on The Complex Equilibria of Divalent Metal Ions with L-Leucine Amino Acid. Research Journal of Pharmacy and Technology. 2024; 17(8):3829-5. doi: 10.52711/0974-360X.2024.00594   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-42


REFERENCES:
1.    Thanavelan R. Ramalingam G.  Manikandan G. Thanikachalam V. Stability constants of mixed ligand complexes of lead (II) with 1-(aminomethyl) cyclohexane acetic acid and α-amino acids. Journal of Saudi Chemical Society. 2014; 18(3): 227-3. doi.org/10.1016/j.jscs.2011.06.016
2.    Khatua1 SK. Nayak SC. Das PK. Guin RR.  Design, Synthesis and Physico-Chemical Investigation of the Iron (II) Complexes Containing Heterocyclic Nitrogen Donor Ligands.  Asian Journal of Research in Chemistry. 2012; 5(4): 529-31.
3.    Pelizetti E, Pramaro E, Analytical applications of organized molecular assemblies, Anal Chim Acta. 1985; 169: 1-29.
4.    Ganguly S. Effect of Cationic Surface Active agents on As(III) Biosorption by Aspergillus niger X300. Asian Journal of Pharmaceutical Research. 2013; 3(3): 132-3.
5.    Barmi MJ, Sundaram MM, Role of polymeric surfactant in the synthesis of cobalt molybdate nanospheres for hybrid capacitor applications, RSC Advances. 2016; 6: 36152-162.doi.org/10.1039/C6RA02628A
6.    Ramkumar R. Sundaram MM. A biopolymer gel-decorated cobalt molybdate nanowafer: effective graft polymer cross-linked with an organic acid for better energy storage, New Journal of Chemistry. 2016; 1: 40: 2863-77.doi.org/10.1039/C5NJ02799C
7.    Szymula M. Radzki S. A study of molecular complex formation between propyl gallate and ascorbic acid in the microemulsion phase of sodium dodecyl sulfate, pentanol and water system Colloids and Surfaces B: Biointerfaces. 2004; 35(3-4): 249-57. doi.org/10.1016/S0927-7765(03)00103-6
8.    Jaiswal PV. Ijeri VS. Srivastava AK. Effect of surfactants on the dissociation constants of ascorbic and maleic acids, Colloid Surf B. 2005; 46(1): 45-51.doi.org/10.1016/j.colsurfb.2005.09.001
9.    Ezzio P. Edmondo P. Acid-base titrations of substituted benzoic acids in micellar systems. Analytica Chimica Acta. 1980; 117: 403-6. doi.org/10.1016/0003-2670(80)87047-4
10.    Drummond CJ. Grieser F. Healy TW. Acid–base equilibria in aqueous micellar solutions. Acid–base equilibria in aqueous micellar solutions. J Chem Soc Faraday Trans 1. 1989; 85: 521-35. doi.org/10.1039/F19898500521
11.    Mukerjee P. Mysels KJ. Critical Micellar Concentrations of Aqueous Surfactant Systems, National Bureau of Standards: Washington, 1971.
12.    Jagasia PV. The spectrophotometric determination of metavanadates (VO3-) using tannic acid as a reagent. Asian Journal of Research in Chemistry. 2012; 5(9): 1123-28.
13.    Naik KBK. Raju S. Kumar BA. Rao GN. Chemical speciation of binary complexes of Pb(II), Cd(II) and Hg(II) with L-Glutamic acid In dioxan–water mixtures. Chem Speciat Bioavailab. 2012; 24: 241-47. 10.3184/095422912X13494547943184
14.    Kumar NV. Srikanth B. Rao GN. Speciation of L-aspartic acid complexes of Co(II), Ni(II), Cu(II) and Zn(II) in Acetonitrile and Ethylene glycol- Water Mixtures. Bulletin of the Chemical Society of Ethiopia. 2012; 26(2): 239-47.10.4314/bcse.v26i2.7
15.    Raju BR. Devi KVS. Rao GN. Speciation Studies of some essential metal complexes of 1, 10-Phenanthroline in dioxin-water mixtures, Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2011; 81: 265-72.
16.    Raju BR. Devi KVS. Rao G.N. Formation of binary complexes of Co(II), Ni(II) and Cu(II) with L-DOPA in dioxan-water Mixtures,  Bulletin of the Chemical Society of Ethiopia. 2011; 25: 43-52.
17.    Raju S. Naik KBK. Kumar BA. Rao GN. Speciation of binary complexes of L-glutamic acid with Co(II), Ni(II) and Cu(II) in low dielectric media. Journal of the Indian Chemical Society. 2012; 89: 57-62.
18.    Balakrishna M, Rao GS, Ramanaiah M, Rao GN, Raju BR. Speciation studies of ternary complexes of Co(II), Ni(II), and Cu(II) with 5-Sulfosalicylic acid and 5-Hydroxysalicylic acid in urea-water mixtures. Research Journal of Pharmacy and Technology. 2017; 10(11): 3681-86.
19.    Singh A. Singh P. Chauhan KBS. Thermodynamic Parameters and Stability Constants of Chromium (III) Complexes of Carbohydrazone and Thiocarbohydrazone. Research Journal of Science and Technology. 2010; 2(2): 29-30.
20.    Kelode SR. Thermal and microbiological evaluation of Co(II), Ni(II), Cu(II), Cr(III), Mn(III), Fe(III), VO(IV), Zr(IV) and UO2(IV) Complexes derived from thiazole Schiff base. Asian Journal of Research in Chemistry. 2012; 5(8): 1053-6.
21.    Jebur MH. Synthesis and Identification of Macrocycles and Complexes with (Cd2+). Asian Journal of Pharmacy and Technology. 2014; 4(2): 53-8.
22.    Sheeja Lovely KLP. Christudhas M. Synthesis, characterization and antimicrobial activity of Schiff base complexes of Cu (II) and Ni (II). Asian Journal of Research in Chemistry. 2012; 5(9): 1143-49.
23.    Ezhumalai M. Hemalatha G. Poornima JP. Pugalendi KV. Inhibition of Lactobacillus growth by amino acids and phytochemicals in the fermentation of curd by disc diffusion method. Asian Journal of Pharmaceutical Research. 2013; 3(4): 189-93.
24.    Rao RS. Rao GN. Computer Applications in Chemistry, Himalaya Publishing House, Mumbai, 2005; 302.
25.    Gran G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst. 1952; 77: 661-71.
26.    Gran G. Equivalence volumes in potentiometric titrations. Anal Chim Acta. 1988; 206: 111-23. doi.org/10.1016/S0003-2670(00)80835-1
27.    Singh A. Singh P. Chauhan KBS. Thermodynamic Parameters and Stability Constants of Chromium (III) Complexes of Carbohydrazone and Thiocarbohydrazone. Research Journal of Science and Technology.2010; 2(2): 29-30.
28.    Balakrishna M. Neeraja R. Kumar JS. Ramanaiah M. An electrometric method for the determination of impact of DMSO-water mixtures on pka values of salicylic acid derivatives. International Journal of Applied Pharmaceutics. 2023; 15(6): 309-14. doi.org/10.22159/ijap.2023v15i6.49253.
29.    Ramanaiah M. Balakrishna M. Neeraja R. Gouthamsri S. Seetharam P. The formation analysis of Ca (ii), Mg (ii), Zn (ii) and 5-hydroxysalicylic acid binary complexes in cetyltrimethylammonium bromide cationic micelles. Ind J Pharm Edu Res. 2023; 57(3s): s734-s741.10.5530/ijper.57.3s.83
30.    Ramanaiah M. Sri SG. Balakrishn M. Raju BR. Effect of cationic micelles of cetyltrimethylammoniumbromide on protonation equilibria of salicylic acid derivatives. Journal of the Chilean Chemical Society. 2017; 62(4): 3677-82. doi.org/10.4067/s0717-97072017000403677
31.    Ramanaiah M. Sitaram P. Balakrishna M. Ramaraju B. Potentiometric studies on complexes of Ca II, Mg II and Zn II with 5-Sulfosalicylic acid in cation micelles of CTAB. Heliyon. 2019; 5: e02157. 10.1016/j.heliyon.2019.e02157
32.    Seetharam P. Balakrishna M. Ramanaiah M. Sailaja BBV. Potentiometric studies on bioactive material species of ternary complexes in SLS-Water mixtures. Materials Today: Proceedings. 2021; 42: 3046-53. doi.org/10.1016/j.matpr.2020.12.827
33.    Ramanaiah M. Gouthamsri S. Balakrishna M. Raju BR. Sailaja BBV. Effect of nonionic micelles of triton X-100 on protonation equilibria of salicylic acid derivatives. Journal of the Indian Chemical Society. 2017; 94: 253-59.
34.    Balakrishna M. Ramanaiah M. Rao GN. Ramaraju B. Rao GS. Influence of dielectric constants on protonation equlibria of 5-sulfo salicylic acid and 5- hydroxy salicylic acid in urea-water mixtures. Journal of the Indian Chemical Society. 2017; 94: 37-45.
35.    Dubey RD. Chandraker G. Sahu PK. Paroha S. Sahu DK. Verma S. Daharwal SJ. Reddy S.L.N.P. Computer Aided Drug Design: A Review. Research Journal of Engineering and Technology. 2011; 2(3): 104-08.
36.    Gaikwad RW. Warade AR. Computer Aided Design of Multi-Component Distillation Column. Research Journal of Science and Technology. 2009; 1(2): 74-81.
37.    Seetharam P. Ramanaiah M. Sailaja BBV. Protonation equilibria of glycylglycine and histamine in cationic micellar media. Journal of the Indian Chemical Society. 2016; 93: 929-36.
38.    Ramanaiah M. Sailaja BBV. Mixed Ligand Complex Formation Equilibria of Some Toxic metal Ions with L-Phenylalanine and Maleic Acid in CTAB-Water Mixtures. Journal of the Indian Chemical Society. 2014; 91:1649-60.
39.    Gans P. Sabatini A. Vacca A. An improved computer program for the computation of formation constants from potentiometric data. Inorganica Chimica Acta. 1976; 18: 237-9.doi.org/10.1016/S0020-1693(00)95610-X
40.    Balakrishna M. Rao GS. Ramanaiah M. Ramaraju B. Rao GN. pH Metric Investigation on Chemical Speciation of Co(II), Ni(II) And Cu(II) Complexes With 5-Hydroxysalicylic Acid in Urea-Water Mixtures. Journal of the Indian Chemical Society. 2017; 94(8): 905-12.
41.    Sudha M. Ramanaiah M. Sunitha PS. Triveni Y. Sailaja BBV. Computer-assisted Potentiometric Analysis of L-leucine and Isoleucine Protonation Equilibria in SLS-water System. Progress in Chemical Science Research. 2023; 7: 30-41. doi.org/10.9734/bpi/pcsr/v7/9582F
42.    Balakrishna M. Charan PHK. Suhasini KP. Ramanaiah M. Nature and Stability of Co(II), Ni(II) and Cu(II) Complexes with 5-Hydroxysalicylic Acid in DMSO-Water Mixtures: An Electrometric Investigation. Research Journal of Chemistry and Environment. 2024; 28 (6): 1-9
43.    Bunton CA. Romsted LS. Supulveda LA. Quantitative treatment of micellar effects upon deprotonation equilibriums. Journal of Physical Chemistry. 1980; 84(20): 2611-18. doi.org/10.1021/j100457a027
44.    Chaimovich H. Bonilha JBS. Politi MJ. Quina FH. Ion exchange in micellar solutions. 2. Binding of hydroxide ion to positive micelles. Journal of Physical Chemistry. 1979; 83(14): 1851-54. doi.org/10.1021/j100477a011
45.    Born M. Volumen und hydratationswärme der Ionen. Z Physik. 1920; 1(1):45-8.10.1007/BF01881023   
46.    Obata Y. Takayama K. Maitani Y. Machida Y. Effect of ethanol on skin permeation of nonionized and ionized diclofenac. International Journal of Pharmaceutics. 1993; 89(3): 191-8. doi.org/10.1016/0378-5173(93)90243-9
47.    Takahashi K. Tamagawa S. Katagi T. Yoshitomi H. Kamada A. Rytting JH. Nishihata T. Mizuno N. In vitro transport of sodium diclofenac across rat abdominal skin: affect of selection of oleaginous component and the addition of alcohols to the vehicle. Chem Pharm Bull. 1991; 39(1): 154-8. 10.1248/cpb.39.154.
48.    Gungor S. Bergisadi N. Effect of penetration enhancers on in vitro percutaneous penetration of nimesulide through rat skin. Pharmazie. 2004; 59: 39-41.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available