Author(s): Samia Alem, Youssouf Driouche, Hamza Haddag, Zihad Bouslama

Email(s): samia.alem@univ-annaba.dz

DOI: 10.52711/0974-360X.2024.00593   

Address: Samia Alem1*, Youssouf Driouche2, Hamza Haddag3, Zihad Bouslama1,2
1Laboratory of Aquatic and Terrestrial Ecology, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP. 12, 23000 Annaba, Algeria.
2Environmental Research Center, Alzon, BP.72 A, Menadia, Annaba, Algeria.
3Organic Synthesis and Biocatalysis Laboratory, Badji Mokhtar University, PB. 12, 23000, Annaba, Algeria.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
The search for an eco-freindly larvicide suitable for vector control requires a budget and considerable time to carry out experiments. Fortunately, the use of QSAR modeling allows the prediction of larvicidal activity of structurally diverse chemicals against mosquitoes in a way quick and costless. This approach can be helpful to study for making biolarvicide with highest ability to destroy mosquito larvae. We propose a QSAR model using two different statistical methods, multiple linear regression (MLR) and Support vector machine (SVM) for predicting the larvicidal activity of 30 compounds of essential oil (EOs) isolated from the root of Asarum heterotropoides against Culex pipiens pallens. A model with four theoretical descriptors derived from Dragon software was developed applying the genetic algorithm (GA)-variable subset selection (VSS) procedure. The statistical parameters, R2 = 0.9716, Q2LOO = 0.9595, s = 0.1690 of the model developed by MLR showed a good predictive capability for log LC50 values. The comparison between the results of SVM and MLR models showed that the SVM model present a good alternative to construct a QSAR model for the prediction of the larvicidal activity.


Cite this article:
Samia Alem, Youssouf Driouche, Hamza Haddag, Zihad Bouslama. Larvicidal activity prediction of Essential oils against Culex pipiens pallens using QSAR Modeling. Research Journal of Pharmacy and Technology. 2024; 17(8):3821-8. doi: 10.52711/0974-360X.2024.00593

Cite(Electronic):
Samia Alem, Youssouf Driouche, Hamza Haddag, Zihad Bouslama. Larvicidal activity prediction of Essential oils against Culex pipiens pallens using QSAR Modeling. Research Journal of Pharmacy and Technology. 2024; 17(8):3821-8. doi: 10.52711/0974-360X.2024.00593   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-41


REFERENCES:
1.    Manimaran A. et al. Larvicidal and knockdown effects of some essential oils against Culexquinque fasciatus Say, Aedes aegypti (L.) and Anopheles stephensi (Liston). Advances in Bioscience and Biotechnology. 2012; 3: 855-862. https://doi.org/10.4236/abb.2012.37106
2.    Manjari MS. et al.Chemical composition and larvicidal activity of plant extracts from Clausenadentata (Willd) (Rutaceae) against dengue, malaria, and filariasis vectors. Parasitology research. 2014; 113(7): 2475-2481. https://doi.org/10.1007/s00436-014-3896-7
3.    Das K, Vasudeva C, Dang R. Economical novel formulation and evaluation of herbal oils for mosquito and house fly repellent activities. Annals of Phytomedicine-An International Journal. 2016; 5: 91-6. https://doi.org/10.21276/AP.2016.5.2.11
4.    Reegan AD etal. Larvicidal and ovicidal activities of phenyl acetic acid isolated from Streptomyces collinus against Culexquinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae). Experimental Parasitology. 2021; 226. https://doi.org/10.1016/j.exppara.2021.108120
5.    Lucia A. etal. Development of an environmentally friendly larvicidal formulation based on essential oil compound blend to control Aedesaegypti larvae: Correlations between physicochemical properties and insecticidal activity. ACS Sustainable Chemistry & Engineering. 2020; 8(29): 10995-11006. https://doi.org/10.1021/acssuschemeng.0c03778
6.    Dias CN, Moraes D FC. Essential oils and their compounds as AedesaegyptiL.(Diptera: Culicidae) larvicides. Parasitology research. 2014; 113(2): 565-592. https://doi.org/10.1007/s00436-013-3687-6
7.    Pavela R, Kaffkova K, Kumštam. Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culexquinquefasciatus say (Diptera: Culicidae). Plant Protection Science. 2014; 50(1): 36-42. https://doi.org/10.17221/48%2F2013-PPS
8.    CetinH, Yanikoglu A. A study of the larvicidal activity of Origanum (Labiatae) species from southwest Turkey. Journal of Vector ecology. 2006; 31(1): 118-122. https://doi.org/10.3376/1081-1710(2006)31[118:asotla]2.0.co;2
9.    Quiroz-Martínez H, Rodríguez-Castro A. Aquatic insects as predators of mosquito larvae. Journal of the American mosquito control association. 2007; 23(sp2): 110-117. https://doi.org/10.2987/8756-971x(2007)23[110:aiapom]2.0.co;2
10.    Saavedra LM, Romanelli GP, Duchowicz PR. Quantitative structure–activity relationship (QSAR) analysis of plants derived compounds with larvicidal activity against ZikaAedesaegypti (Diptera: Culicidae) vector using freely available descriptors. Pest management science. 2018; 74(7): 1608-1615. https://doi.org/10.1002/ps.4850
11.    Devillers J, Doucet-Panaye A, Doucet JP. Structure–activity relationship (SAR) modelling of mosquito larvicides. SAR and QSAR in Environmental Research. 2015; 26(4): 263-278. https://doi.org/10.1080/1062936x.2015.1026571
12.    Hamada H. Predictive QSAR models for the toxicity of phenols. Asian Journal of Research in Chemistry. 2022; 15(6): 433-8. doi: 10.52711/0974-4150.2022.00076
13.    Javidfar M, Ahmadi S. QSAR modelling of larvicidal phyto compounds against Aedes aegypti using index of ideality of correlation. SAR and QSAR in Environmental Research. 2020; 31(10): 717-739. https://doi.org/10.1080/1062936X.2020.1806922
14.    Alencar Filho EB, Castro Silva JW, Cavalcanti SC.Quantitative structure-toxicity relationships and molecular highlights about Aedesaegyptilarvicidal activity of monoterpenes and related compounds. Medicinal Chemistry Research. 2016; 25(10): 2171-2178. http://dx.doi.org/10.1007%2Fs00044-016-1650-7
15.    Venkatesh K, Aravinda P. Application of Molecular Descriptors in Modern Computational Drug Design- An Overview. Research J. Pharm. and Tech. 2017; 10(9): 3237-3241. doi: 10.5958/0974-360X.2017.00574.1
16.    Hansch C, Verma RP. Larvicidal activities of some organotin compounds on mosquito larvae: A QSAR study. European Journal of Medicinal Chemistry. 2009; 44(1): 260-273. https://doi.org/10.1016/j.ejmech.2008.02.040
17.    Perumalsamy H, Kim NJ, Ahn YJ. Larvicidal activity of compounds isolated from Asarum aheterotropoides against Culexpipienspallens, Aedesaegypti, and Ochlerotatustogoi (Diptera: Culicidae). Journal of Medical Entomology. 2009; 46(6): 1420-1423. http://dx.doi.org/10.1603/033.046.0624
18.    Kennard RW, Stone LA. Computer aided design of experiments. Technometrics. 1969; 11(1): 137-148. https://doi.org/10.1080/00401706.1969.10490666
19.    Hyperchem TM. Release 6.03 for windows. 2000. Molecular Modeling system. http://www.hypercubeusa.com/News/PressRelease/Release60Feb2000/tabid/411/Default.aspx
20.    Taletesrl, DRAGON. (Software for Molecular Descriptors calculation) version 5.5. 2007.http://www.talete.mi.it/
21.    Todeschini R. et al. MobyDigs version 1.1.2009 Copyright TALETE srl. 2004.http://www.talete.mi.it/
22.    Molegro Data Modeller (MDM), v2.0. Copyright Molegro. 2009. https://www.scientific-computing.com/press-releases/molegro-data-modeller-v20
23.    Didi M. et al. Modeling and prediction of flash point of unsaturated hydrocarbons using hybrid genetic algorithm/multiple linear regression approach. Research Journal of Pharmaceutical Biological and Chemical Sciences. 2017; 8(4): 379-390. https://www.rjpbcs.com/2017_8.4.html
24.    Organisation for Economic Co-operation and Development. Guidance document on the validation of (quantitative) structure-activity relationship [(Q) SAR] models. Organisation for Economic Co-operation and Development. 2014
25.    Leardi R, Boggia R,Terrile M. Genetic algorithms as a strategy for feature selection. Journal of Chemometrics. 1992; 6(5): 267-281. https://doi.org/10.1002/cem.1180060506
26.    Liu P, Long W. Current mathematical methods used in QSAR/QSPR studies.2009; International Journal of Molecular Sciences, 10(5), 1978-1998. https://doi.org/10.3390/ijms10051978
27.    Todeschini R,Consonni V, Maiocchi A. The K correlation index: theory development and its application in chemometrics. Chemometrics and Intelligent Laboratory Systems. 1999; 46(1): 13-29. https://doi.org/10.1016/S0169-7439(98)00124-5
28.    Golbraikh A, Tropsha A. Beware of q2!. Journal of molecular Graphics and Modeling. 2002; 20(4): 269-276. https://doi.org/10.1016/S1093-3263(01)00123-1
29.    Kertiou NE, Bouakkadia A, Messadi D. QSPR study of the boiling point of diverse hydrocarbons: hybrid (GA/MLR) approach. Research Journal of Pharmaceutical Biological and Chemical Sciences. 2017; 8(6): 251-265. https://www.rjpbcs.com/pdf/2017_8(6)/[29].pdf
30.    Vapnik, V. N. Statistical Learning Theory, John Wiley & Sons, New York. 1998.
31.    Bouakkadia A. et al. Use of GA-ANN and GA-SVM for a QSPR study on the aqueous solubility of pesticides. Journal of the Serbian Chemical Society. 2021; 86(7-8): 673-684. https://doi.org/10.2298/JSC200618066B
32.    Vapnik V N. The Nature of Statistical Learning Theory. Springer, New York. 2000.
33.    Lu CJ, Lee TS, Chiu CC. Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems. 2009; 47(2): 115-125. https://doi.org/10.1016/j.dss.2009.02.001
34.    Jothilakshmi S, Gudivada VN. Handbook of Statistics, Vol. 35, Ch. 10, Elsevier, Amsterdam. 2016; pp. 301–340. http://dx.doi.org/10.1016/bs.host.2016.07.005
35.    Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel- based learning methods, Publishing House of Electronics Industry, Beijing. 2004; pp. 93–122.
36.    Amiri R etal. Lourici L. QSPR Models for the prediction of octanol/water partition coefficient of organophosphorous insecticides. Egyptian Journal of Chemistry. 2019; 62(9); 1563-1574. https://doi.org/10.21608/ejchem.2019.4976.1446
37.    Vapnik V. The Nature of Statistical Learning Theory, Springer-Verlag New York, Inc. 1995.
38.    Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines, Cambridge, UK: Cambridge Univ. Press. 2000; 32–42.
39.    Schölkopf B, Smola A. Learning with Kernels, MIT Press, Cambridge, MA. 2001; 13–17.
40.    Bouakkadia A. et al. QSPR study of the water solubility of a diverse set of agrochemicals: hybrid (GA/MLR) approach. Synthèse: Revue des Sciences et de la Technologie. 2016; 32: 12-21. https://www.ajol.info/index.php/srst/issue/view/13942
41.    Deeb O, Goodarzi M. Predicting the solubility of pesticide compounds in water using QSPR methods. Molecular Physics. 2010; 108(2): 181-192. https://doi.org/10.1080/00268971003604575
42.    Wang W. et al. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing. 2003; 55(3-4): 643-663. https://doi.org/10.1016/S0925-2312(02)00632-X
43.    Driouche Y, Messadi D. Quantitative structure–retention relationship model for predicting retention indices of constituents of essential oils of Thymus vulgaris (Lamiaceae). Journal of the Serbian Chemical Society. 2019; 84(4): 405-416. https://doi.org/10.2298/JSC180817010D
44.    Bouarra N. et al. Quantitative structure-electrochemistry relationship modeling of a series of anticancer agents using MLR and ANN approaches. Chemical Product and Process Modeling, 2024. https://doi.org/10.1515/cppm-2023-0024
45.    Bouakkadia A. et al. Modeling of the Henry constant of a series of pesticides: Quantitative structure-property relationship approach. International Journal of Safety and Security Engineering, 2020; 10(3): 389- 396. https://doi.org/10.18280/IJSSE.100311

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available