Author(s): Aisyah, Marselina Irasonia Tan, Azzania Fibriani

Email(s): afibriani@sith.itb.ac.id

DOI: 10.52711/0974-360X.2024.00587   

Address: Aisyah, Marselina Irasonia Tan, Azzania Fibriani*
School of Life Sciences and Technology, Bandung Institute of Technology, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Resistance to anti-EGFR treatment in colorectal cancer may arise due to the loss of PTEN function or the presence of KRAS G12D mutation. These genetic events can lead to persistent activation of the PI3K-AKT or RAS-MAPK signaling pathways, respectively. Overcoming anti-EGFR resistance can be achieved by inhibiting these signaling pathways using AKT or KRAS G12D inhibitors. The exploration of plant-derived compounds with anticancer activity offers a promising avenue for discovering potential AKT or KRAS G12D inhibitors. Therefore, this study aimed to identify natural compounds from Indonesian medicinal plants that could be developed as AKT or KRAS G12D inhibitors using a molecular docking approach. The in-silico screening of natural compounds involved the utilization of oral drug parameters. Subsequently, the filtered natural compounds were docked into the binding sites of respective proteins. The analysis involved evaluating the AutoDock Vina scoring function and examining the ligand interactions with residues within the binding site to assess the potential of the natural compounds. The findings revealed that among the 1311 natural compounds from 320 Indonesian medicinal plant species, 274 compounds met the oral drug parameters and predicted to pose anticancer activities based on QSAR analysis. Notably, morindone and porphyrin demonstrated the highest potential for development as AKT inhibitors, while phaseollin exhibited the most potential as a KRAS G12D inhibitor.


Cite this article:
Aisyah, Marselina Irasonia Tan, Azzania Fibriani. Molecular Docking Study of Natural Compounds from Indonesian Medicinal plants as AKT and KRAS G12D Inhibitors Candidates. Research Journal of Pharmacy and Technology. 2024; 17(8):3777-5. doi: 10.52711/0974-360X.2024.00587

Cite(Electronic):
Aisyah, Marselina Irasonia Tan, Azzania Fibriani. Molecular Docking Study of Natural Compounds from Indonesian Medicinal plants as AKT and KRAS G12D Inhibitors Candidates. Research Journal of Pharmacy and Technology. 2024; 17(8):3777-5. doi: 10.52711/0974-360X.2024.00587   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-35


REFERENCES:
1.    WHO. Source: Globocan 2020. Globocan 2020. 2020. available on https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf.
2.    Porru M. Pompili L. Caruso C. Biroccio A. Leonetti C. Targeting KRAS in metastatic colorectal cancer: Current strategies and emerging opportunities. J Exp Clin Cancer Res. 2018; 37(1). doi:10.1186/s13046-018-0719-1
3.    Zhao B. Wang L. Qiu H. et al Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget. 2017; 8(3): 3980-4000. doi:10.18632/oncotarget.14012
4.    Li QH. Wang YZ. Tu J. et al Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep. 2020; 8(3): 179-191. doi:10.1093/gastro/goaa026
5.    Waniczek D. Śnietura M. Lorenc Z. Nowakowska-Zajdel E. Muc-Wierzgoń M. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot-conjugated antibodies. Oncol Lett. 2018; 15(1): 1236-1240. doi:10.3892/ol.2017.7392
6.    Chen CC. Er TK. Liu YY. et al Computational analysis of KRAS mutations: implications for different effects on the KRAS p.G12D and p.G13D Mutations. PLoS One. 2013; 8(2): 6-13. doi:10.1371/journal.pone.0055793
7.    Saura C. Roda D. Roselló S. et al A first-in-human phase I study of the ATP-competitive AKT inhibitor Ipatasertib demonstrates Robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 2017; 7(1): 102-113. doi:10.1158/2159-8290.CD-16-0512
8.    Crabb SJ. Griffiths G. Marwood E. et al Pan-AKT inhibitor capivasertib with docetaxel and prednisolone in metastatic castration-resistant prostate cancer: A randomized, placebo-controlled phase II trial (procaid). J Clin Oncol. 2021; 39(3): 190-201. doi:10.1200/JCO.20.01576
9.    Bang YJ. Kang YK. Ng M. et al A phase II, randomised study of mFOLFOX6 with or without the Akt inhibitor ipatasertib in patients with locally advanced or metastatic gastric or gastroesophageal junction cancer. Eur J Cancer. 2019; 108: 17-24. doi:10.1016/j.ejca.2018.11.017
10.    Wang Y. Zhang H. Li J. Niu MM. Zhou Y. Qu Y. Discovery of potent and noncovalent KRASG12D inhibitors: Structure-based virtual screening and biological evaluation. Front Pharmacol. 2022; 13(December): 1-11. doi:10.3389/fphar.2022.1094887
11.    Mao Z. Xiao H. Shen P. et al KRAS(G12D) can be targeted by potent inhibitors via formation of salt bridge. Cell Discov. 2022; 8(1). doi:10.1038/s41421-021-00368-w
12.    Shaik BB. Katari NK. Jonnalagadda SB. Role of natural products in developing novel anticancer agents: a perspective. Chem Biodivers. 2022; 19(11). doi:10.1002/cbdv.202200535
13.    Ragunathan A. Ravi L. Krishna K. Cytotoxic potential of 4-hydroxypentan-2-oneextracted from Jacaranda mimosifolia on colorectal cancer cells. Research J. Pharm. and Tech. 2018; 11(6): 2251-2257. doi:10.5958/0974-360X.2018.00417.1
14.    Purushothaman B. Suganthi N. Jothi A. Shanmugam K. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: an insilico approach. Research J. Pharm. and Tech. 2019; 12(7): 3423-3427. doi:10.5958/0974-360X.2019.00579.1
15.    Drapak I, Suleiman M, Protopopov M, Yeromina H, Sych I, Ieromina Z, Sych I PL. The use of the docking studies with the purpose of searching potential antihypertensive drugs. Research J. Pharm. and Tech. 2019; 12(10): 4889-4894. doi:10.5958/0974-360X.2019.00846.1
16.    Kodical DD. James JP. K D. Kumar P. Cyriac C. K.V G. ADMET, Molecular docking studies and binding energy calculations of pyrimidine-2-thiol derivatives as Cox inhibitors. Research. J. Pharm. and Tech. 2020; 13(9): 4200-4206. doi:10.5958/0974-360X.2020.00742.8
17.    Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7. doi:10.1038/srep42717
18.    Susmi MS. Kumar RS. Sreelakshmi V. Menon SV. et al A computational approach for identification of phytochemicals for targeting and optimizing the inhibitors of heat shock proteins. Research J. Pharm. and Tech. 2015; 8(9): 1199-1204. doi:10.5958/0974-360X.2015.00219.X
19.    Qais FA. Alomar SY. Imran MA. Hashmi MA. In-silico analysis of phytocompounds of Olea europaea as potential anti-cancer agents to target pkm2 protein. Molecules. 2022; 27(18). doi:10.3390/molecules27185793
20.    Renantha RR. Liga AR. Tanugroho CB. Denovian LX. Budiyanto SLAZ. Parikesit AA. Flavonoids as potential inhibitors of dengue virus 2 (DENV2) envelope protein. J. Pharm. Pharmacogn Res. 2022; 10(4): 660-675. doi:10.56499/jppres22.1375_10.4.660
21.    Pradeep P. Rengaswamy D. In silico molecular docking studies of quercetin compound against anti-inflammatory and anticancer proteins. Research J. Pharm. and Tech. 2019; 12(11): 5305-5309. doi:10.5958/0974-360X.2019.00919.3
22.    Shanmugapriya E. Velayutham R. Muthukumar VA. Molecular docking studies on naturally occurring selected flavones against protease enzyme of Dengue virus. Research J. Pharm. and Tech. 2016; 9(7): 929-932. doi:10.5958/0974-360X.2016.00178.5
23.    Joosten RP. Long F. Murshudov GN. Perrakis A. The PDB-REDO server for macromolecular structure model optimization. IUCrJ. 2014; 1: 213-220. doi:10.1107/S2052252514009324
24.    Yu J. Zhou Y. Tanaka I. Yao M. Roll: A new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics. 2009; 26(1): 46-52. doi:10.1093/bioinformatics/btp599
25.    Tallei TE. Tumilaar SG. Niode NJ. et al Potential of plant bioactive compounds as sars-cov-2 main protease (mpro) and spike (s) glycoprotein inhibitors: a molecular docking study. Scientifica (Cairo). 2020; 2020. doi:10.1155/2020/6307457
26.    Cosconati S. Forli S. Perryman AL. Harris R. Goodsell DS. Olson AJ. Virtual screening with autodock: theory and practice. Expert Opin Drug Discov. 2010; 5(6): 597-607. doi:10.1517/17460441.2010.484460
27.    Trott O. Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-461. doi:10.1002/jcc.21334
28.    Laskowski RA. Swindells MB. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model. 2011; 51(10): 2778-2786. doi:10.1021/ci200227u
29.    LigPlot+ Operating Manual. 2021. available on https://www.ebi.ac.uk/thornton-srv/software/LigPlus/manual2/manual.html.
30.    Pettersen EF. Goddard TD. Huang CC. et al UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 1605-1612. doi:10.1002/jcc.20084
31.    Chinchole P. Wankhede SB. Comparative in silico drug likeness and in vitro study of some Schiff’s bases as potent COX-II Inhibitors. Research J Pharm and Tech. 2019; 12(10): 4973-4980. doi:10.5958/0974-360X.2019.00862.X
32.    Abbas J. Anticancer Evaluation of Plants from Indonesian Tropical Rain Forests. Indones J Cancer Chemoprevention. Published online 2011.
33.    Anggreini N. Saputri RD. Tjahjandarie TS. Tanjung M. Aktivitas antikanker senyawa pterokarpan. Pharm Med J. 2018; 1(1).
34.    Suryowati T. Damanik R. Bintang M. Handharyani E. Identifikasi komponen kimia dan aktivitas antioksidan dalam tanaman torbangun (Coleus amboinicus Lour). J Gizi Pangan. 2015; 10(3): 217-224. doi:10.25182/jgp.2015.10.3.
35.    Sutiono DR. Mario M. Reinald G. Liani O. Susanto S. Native indonesian herbs : challenges in the future for anti-cancer drugs. Cdk. 2017; 44(11): 822-826.
36.    Tanjung M. Tjahjandarie TS. Saputri RD. Kurnia BD. Rachman MF. Syah YM. Calotetrapterins A-C, three new pyranoxanthones and their cytotoxicity from the stem bark of Calophyllum tetrapterum Miq. Nat Prod Res. 2021; 35(3): 407-412. doi:10.1080/14786419.2019.1634714
37.    Asep S. Hening H. Gema SP. Gigih S. Widya MC. Sahidin. Anticancer activity of jatrophone an isolated compound from Jatropha gossypifolia plant against hepatocellular cancer cell Hep G2 1886. Biomed Pharmacol J. 2017; 10(2): 667-673. doi:10.13005/bpj/1154
38.    Bahtiar A. Vichitphan K. Han J. Leguminous plants in the Indonesian archipelago: traditional uses and secondary metabolites. Nat Prod Commun. 2017; 12(3): 461-472. doi:10.1177/1934578x1701200338
39.    Darwati I. Nurcahyanti A. Trisilawati O. Nurhayati H. Bermawie N. Wink M. Anticancer potential of kebar grass (Biophytum petersianum), an Indonesian traditional medicine. IOP Conf Ser Earth Environ Sci. 2019; 292(1). doi:10.1088/1755-1315/292/1/012063
40.    Jayani NIE. Krisnawan AH. Oktaviyanti ND. Kartini. Standardization of Phyllanthus niruri and Sonchus arvensis as components of scientific jamu. Maj Obat Tradis. 2020; 25(1): 7. doi:10.22146/mot.45955
41.    Meiyanto E. Larasati YA. The chemopreventive activity of indonesia medicinal plants targeting on hallmarks of cancer. Adv Pharm Bull. 2019; 9(2): 219-230. doi:10.15171/jcvtr.2015.24
42.    Minggarwati TS. Uji aktivitas antikanker dan identifikasi senyawa aktif dari fraksi umbi bawang sabrang (Eleutherine palmifolia (L.) Merr.) Terhadap sel kanker serviks HeLa. Universitas Islam Negeri Maulana Malik Ibrahim; 2017.
43.    Pratiwi RA. Nurlaeni Y. Screening of plant collection of cibodas botanic gardens, indonesia with anticancer properties. Biodiversitas. 2020; 21(11): 5186-5229. doi:10.13057/biodiv/d211125
44.    Restasari A. Kusrini D. Fachriyah E. Isolasi dan identifikasi fraksi teraktif dari ekstrak kloroform daun ketapang (Terminalia catappa Linn). Jurnal FMIPA Kimia UNDIP. 2009.
45.    Nauli T. Penetuan sisi aktif selulase Aspergillus niger dengan docking ligan. JKTI. 2014; 16(2): 94-100.
46.    Huck BR. Mochalkin I. Recent progress towards clinically relevant ATP-competitive Akt inhibitors. Bioorganic Med Chem Lett. 2017; 27(13): 2838-2848. doi:10.1016/j.bmcl.2017.04.090
47.    Mahajan P. Wadhwa B. Barik MR. Malik F. Nargotra A. Combining ligand‑ and structure‑based in silico methods for the identification of natural product‑based inhibitors of Akt1. Mol Divers. 2020; 24: 45-60.
48.    Bencsik JR. Xiao D. Blake JF. et al Discovery of dihydrothieno- and dihydrofuropyrimidines as potent pan Akt inhibitors. Bioorganic Med Chem Lett. 2010; 20(23): 7037-7041. doi:10.1016/j.bmcl.2010.09.112
49.    Kozakov D. Hall DR. Jehle S. et al correction for “ligand deconstruction: why some fragment binding positions are conserved and others are not,.” Proc Natl Acad Sci U S A. 2015; 112(28): E3749. doi:10.1073/pnas.1511466112
50.    Zhan W. Li D. Che J. et al Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: Toward the discovery of novel Akt1 inhibitors. Eur J Med Chem. 2014; 75(March 2014): 11-20. doi:10.1016/j.ejmech.2014.01.019
51.    Urbán L. Patel VF. Vaz RJ, eds. Antitargets and Drug Safety. John Wiley & Sons, Weinheim. 2015.
52.    Chen SF. Cao Y. Chen JJ. Chen JZ. Binding selectivity studies of PKBα using molecular dynamics simulation and free energy calculations. J Mol Model. 2013; 19: 5097-5112.
53.    Lazaro G. Kostaras E. Vivanco I. Inhibitors in aktion: ATP-competitive vs allosteric. Biochem Soc Trans. 2020; 48(3): 933-943. doi:10.1042/BST20190777
54.    Zhang Z. Gao R. Hu Q. et al GTP-state-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent Sci. 2020; 6(10): 1753-1761. doi:10.1021/acscentsci.0c00514
55.    Gentile DR. Rathinaswamy MK. Jenkins ML. et al Ras binder induces a modified switch-ii pocket in GTP and GDP states. Cell Chem Biol. 2017; 24(12): 1455-1466.e14. doi:10.1016/j.chembiol.2017.08.025
56.    Ostrem JM. Peters U. Sos ML. Wells JA. Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013; 503(7477): 548-551. doi:10.1038/nature12796
57.    Sogabe S. Kamada Y. Miwa M. et al Crystal structure of a human K-Ras G12D mutant in complex with GDP and the cyclic inhibitory peptide KRPEP-2D. ACS Med Chem Lett. 2017; 8(7): 732-736. doi:10.1021/acsmedchemlett.7b00128
58.    Buhrman G. O’Connor C. Zerbe B. et al Analysis of binding site hot spots on the surface of Ras GTPase. J Mol Biol. 2011; 413(4): 773-789. doi:10.1016/j.jmb.2011.09.011
59.    Pantsar T. The current understanding of KRAS protein structure and dynamics. Comput Struct Biotechnol J. 2020; 18: 189-198. doi:10.1016/j.csbj.2019.12.004
60.    Canon J. Rex K. Saiki AY. et al The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019; 575(7781): 217-223. doi:10.1038/s41586-019-1694-1

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available