Author(s): Amirah Wan-Azemin, Khamsah Suryati Mohd, Mahadeva Rao, U.S., Sreenivasan Sasidharan, Saravanan Dharmaraj

Email(s): saravanandharmaraj@unisza.edu.

DOI: 10.52711/0974-360X.2024.00586   

Address: Amirah Wan-Azemin1, Khamsah Suryati Mohd2, Mahadeva Rao, U.S.1, Sreenivasan Sasidharan3, Saravanan Dharmaraj1*
1Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, 20400 Kuala Terengganu, Terengganu, Malaysia.
2Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Tembila Campus, 22000 Besut, Terengganu, Malaysia.
3Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Background: The herb Melastoma malabathricum is used widely in Malaysia and other Asian countries for its health benefits and quality control of the herb is vital as there are closely resembling species. This study used morphologically authenticated samples to study the feasibility of ATR-FTIR spectroscopy in combination with chemometrics to differentiate the herb samples from seven locations in two eastern states of Peninsula Malaysia. Methods: The samples obtained from carefully selected plants were scanned in the region 400-4000 cm-1 and the second derivative spectra from 600-2000 cm-1 were analysed with the principal component analysis (PCA), random forest (RF) and genetic algorithm (GA) to identify location-differentiating wavenumbers. Twelve variables from each were then compared using four classification techniques for their ability to differentiate the samples according to origin. Results: The variables selected by RF gave the best classification accuracy in all four classification techniques, followed by GA and PCA. Linear discrimination analysis (LDA) was most suitable for classifying the samples according to locations. The variables selected by RF had 93.9% correct classification for the test samples using LDA, with the sample from L7 and three other locations showing 100% sensitivity, specificity, and efficiency. Chemical content could have played a role as one of the variables differentiating the samples was associated with absorption due to aromatic amine compounds, and L7 sample had earlier shown highest yield. Conclusion: The use of different chemometric techniques on second derivative FTIR spectra for variable selection and use of different classification techniques to avoid biasness gives a robust discrimination of Melastoma malabatricum sample origin.


Cite this article:
Amirah Wan-Azemin, Khamsah Suryati Mohd, Mahadeva Rao, U.S., Sreenivasan Sasidharan, Saravanan Dharmaraj. Chemometric analysis of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectra for geographical authentication of Melastoma malabathricum. Research Journal of Pharmacy and Technology. 2024; 17(8):3769-6. doi: 10.52711/0974-360X.2024.00586

Cite(Electronic):
Amirah Wan-Azemin, Khamsah Suryati Mohd, Mahadeva Rao, U.S., Sreenivasan Sasidharan, Saravanan Dharmaraj. Chemometric analysis of Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectra for geographical authentication of Melastoma malabathricum. Research Journal of Pharmacy and Technology. 2024; 17(8):3769-6. doi: 10.52711/0974-360X.2024.00586   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-34


REFERENCES:
1.    Rajenderan MT. Ethno medicinal uses and antimicrobial properties of Melastoma malabathricum. SEGI Rev. 2010;3(2):34-44.
2.    Zheng WJ, Ren YS, Wu ML, et al. A review of the traditional uses, phytochemistry and biological activities of the Melastoma genus. J Ethnopharmacol. 2021; 264(July 2020): 113322. doi:10.1016/j.jep.2020.113322
3.    Ong HC, Zuki RM, Milow P. Traditional knowledge of medicinal plants among the Malay villagers in Kampung Mak Kemas, Terengganu, Malaysia. Ethno-Medicine. 2011; 5(3): 175-185.
4.    Neamsuvan O, Sengnon N, Seemaphrik N, Chouychoo M, Rungrat R, Bunrasri S. A survey of medicinal plants around upper Songkhla Lake, Thailand. African J Tradit Complement Altern Med. 2015; 12(2): 133-143.
5.    Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S. Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia. 2004; 75(7-8): 667-672. doi:10.1016/j.fitote.2004.07.002
6.    Balamurugan K, Sakthidevi G, Mohan VR. Anti-inflammatory activity of leaf of Melastoma malabathricum L. (Melastomataceae). Int J Res Ayurveda Pharm. 2012; 3(6): 801-802. doi:10.7897/2277-4343.03622
7.    Nurdiana S, Marziana N. Wound healing activities of Melastoma malabathricum leaves extract in Sprague Dawley rats. Int J Pharm Sci Rev Res. 2013; 20(2): 20-23.
8.    Balamurugan K, Nishanthini A, Mohan VR. Antidiabetic and antihyperlipidaemic activity of ethanol extract Melastoma malabathricum Linn. leaf in alloxan induced diabetic rats. Asian Pac J Trop Med. 2014; 4(Suppl 1): S442-S448. doi:10.12980/APJTB.4.2014C122
9.    Kumar V, Sachan R, Rahman M, et al. Chemopreventive effects of Melastoma malabathricum L. extract in mammary tumor model via inhibition of oxidative stress and inflammatory cytokines. Biomed Pharmacother. 2021; 137: 111298. doi:10.1016/j.biopha.2021.111298
10.    Hamid HA, Ramli ANM, Zamri N, Yusoff MM. UPLC-QTOF/MS-based phenolic profiling of Melastomaceae, their antioxidant activity and cytotoxic effects against human breast cancer cell MDA-MB-231. Food Chem. 2018; 265(February): 253-259. doi:10.1016/j.foodchem.2018.05.033
11.    Mamat SS, Kamarolzaman MFF, Yahya F, et al. Methanol extract of Melastoma malabathricum leaves exerted antioxidant and liver protective activity in rats. BMC Complement Altern Med. 2013;13:326. doi:10.1186/1472-6882-13-326
12.    Karupiah S, Ismail Z. Antioxidative effect of Melastoma malabathticum L extract and determination of its bioactive flavonoids from various location in Malaysia by RP-HPLC with diode array detection. J Appl Pharm Sci. 2013; 3(2): 19-24. doi:10.7324/JAPS.2013.30204
13.    Zakaria ZA, Raden Mohd Nor RNS, Hanan Kumar G, et al. Antinociceptive, anti-inflammatory and antipyretic properties of Melastoma malabathricum leaves aqueous extract in experimental animals. Can J Physiol Pharmacol. 2006;84(12):1291-1299. doi:10.1139/Y06-083
14.    Balamurugan K, Nishanthini A, Lalitharani S, Mohan VR. GC-MS Determination of bioactive components of Melastoma malabathricum L. Int J Curr Pharm Res. 2012; 4(4): 24-26.
15.    Zakaria ZA, Jaios ES, Omar MH, et al. Antinociception of petroleum ether fraction derived from crude methanol extract of Melastoma malabathricum leaves and its possible mechanisms of action in animal models. BMC Complement Altern Med. 2016; 16(1): 488. doi:10.1186/s12906-016-1478-1
16.    Kader MA, Rahman MM, Mahmud S, Khan MS, Mukta S, Zohora FT. A comparative study on the Antihyperlipidemic and antibacterial potency of the shoot and flower extracts of Melastoma malabathricum Linn’s. Clin Phytoscience. 2023; 9(1): 5. doi:10.1186/s40816-023-00355-6
17.    Yoshida T, Nakata F, Hosotani K, Nitta A, Okuda T. Tannins and related polyphenols of Melastomataceous plants. V. Three new complex tannins from Melastoma malabathricum L. Chem Pharm Bull. 1992; 40(7): 1727-1732.
18.    Susanti D, Sirat HM, Ahmad F, Ali RM. Bioactive constituents from the leaves of Melastoma malabathricum L. J Ilm Farm. 2008; 5(1): 1-8.
19.    Lau CBS, Yue GGL, Lau KM, et al. Method establishment for upgrading chemical markers in pharmacopoeia to bioactive markers for biological standardization of traditional Chinese medicine. J Tradit Complement Med. 2019; 9(3): 179-183. doi:10.1016/j.jtcme.2018.09.003
20.    Houriet J, Allard PM, Queiroz EF, et al. A mass spectrometry based metabolite profiling workflow for selecting abundant specific markers and their structurally related multi-component signatures in Traditional Chinese Medicine multi‐herb formulae. Front Pharmacol. 2020; 11(December): 1-23. doi:10.3389/fphar.2020.578346
21.    Pan SY, Zhou SF, Gao SH, et al. New perspectives on how to discover drugs from herbal medicines: CAM’S outstanding contribution to modern therapeutics. Evidence-based Complement Altern Med. 2013; 2013. doi:10.1155/2013/627375
22.    Wang Y, Huang HY, Zuo ZT, Wang YZ. Comprehensive quality assessment of Dendrubium officinale using ATR-FTIR spectroscopy combined with random forest and support vector machine regression. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2018; 205: 637-648. doi:10.1016/j.saa.2018.07.086
23.    Shiyan S, Ramadona N, Utami WF, Depriyanti N, Mukafi A, Noviandhani W. Preparation and FTIR-ATR combined with chemometrics analysis of self-emulsifying loaded sungkai extract from Peronema canecens. Res J Pharm Technol. 2023; 16(1): 79-85. doi:10.52711/0974-360X.2023.00014
24.    Fatmarahmi DC, Susidarti RA, Swasono RT, Rohman A. Identification and quantification of metamizole in traditional herbal medicines using spectroscopy ftir-atr combined with chemometrics. Res J Pharm Technol. 2021; 14(8): 4413-4419. doi:10.52711/0974-360X.2021.00766
25.    van Valkenberg JLCH, Bunyapraphatsara N. Melastoma malabathricum L. In: van Valkenberg JLCH, Bunyapraphatsara N, eds. Plant Resources of South-East Asia. 2001; 12(2).
26.    Joffry SM, Yob NJ, Rofiee MS, et al. Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: A review. Evidence-based Complement Altern Med. 2012; 2012. doi:10.1155/2012/258434
27.    Li C, Yang SC, Guo QS, Zheng KY, Wang PL, Meng ZG. Geographical traceability of Marsdenia tenacissima by Fourier transform infrared spectroscopy and chemometrics. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2016; 152: 391-396. doi:10.1016/j.saa.2015.07.086
28.    Dharmaraj S, Gam LY, Sulaiman SF, Mansor SM, Ismail Z. The application of pattern recognition techniques in metabolite fingerprinting of six different Phyllanthus spp. Spectroscopy. 2011; 26(1): 69-78. doi:10.3233/SPE-2011-0527
29.    Dharmaraj S, Jamaludin AS, Razak HM, et al. The classification of Phyllanthus niruri Linn. according to location by infrared spectroscopy. Vib Spectrosc. 2006; 41(1): 68-72.
30.    Kemsley EK. A genetic algorithm (GA) approach to the calculation of canonical variates (CVs). Trends Anal Chem. 1998; 17(1): 24-34.
31.    Li Y, Zhang JY, Wang YZ. FT-MIR and NIR spectral data fusion: a synergetic strategy for the geographical traceability of Panax notoginseng. Anal Bioanal Chem. Published online. 2017: 1-13. doi:10.1007/s00216-017-0692-0
32.    Joshi DD. FTIR Spectroscopy. In: Herbal Drugs and Fingerprints: Evidence Based Herbal Drugs. Springer India; 2012: 121-146. doi:10.1007/978-81-322-0804-4
33.    GBIF Secretariat. Melastoma malabathricum L. Global Information Hub on Integrated Medicine. Published 2014. https://www.globinmed.com/medicinal_herbs/melastoma-malabathricum-l-104890/
34.    POWO. Melastoma malabathricum L. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published 2024. Accessed April 8, 2024. http://www.plantsoftheworldonline.org/
35.    Meyer K. Revision of the Southeast Asian genus Melastoma (Melastomataceae). Blumea. 2001; 46(2): 351-398.
36.    Rohaeti E, Rafi M, Syafitri UD, Heryanto R. Fourier transform infrared spectroscopy combined with chemometrics for discrimination of Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015; 137: 1244-1249. doi:10.1016/j.saa.2014.08.139
37.    Wang YY, Li JQ, Liu HG, Wang YZ. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) combined with chemometrics methods for the classification of Lingzhi species. Molecules. 2019; 24(12): 2210. doi:10.3390/molecules24122210
38.    Wang Y, Shen T, Zhang J, Huang HY, Wang YZ. Geographical authentication of Gentiana rigescens by high-performance liquid chromatography and infrared spectroscopy. Anal Lett. 2018;51(14):2173-2191. doi:10.1080/00032719.2017.1416622
39.    Brangule A, Šukele R, Bandere D. Herbal medicine characterization perspectives using advanced FTIR sample techniques – diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Front Plant Sci. 2020; 11(April): 356. doi:10.3389/fpls.2020.00356
40.    de Santana FB, Mazivila SJ, Gontijo LC, Neto WB, Poppi RJ. Rapid discrimination between authentic and adulterated Andiroba oil Using FTIR-HATR spectroscopy and random forest. Food Anal Methods. 2018; 11(7): 1927-1935. doi:10.1007/s12161-017-1142-5
41.    Wan-Azemin A. Investigation of chemical profile and apoptosis induction by Melastoma malabathricum L . extracts against HEPG2 cell lines. Universiti Sultan Zainal Abidin; 2017.
 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available