Author(s):
A. Kathiraven, R. Srimathi, Kathiravan. M.K
Email(s):
srimathi.radhakrishnan88@gmail.com
DOI:
10.52711/0974-360X.2024.00555
Address:
A. Kathiraven, R. Srimathi*, Kathiravan. M.K
Department of Pharmaceutical Chemistry, SRM College of Pharmacy, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, Tamil Nadu 603203, India.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Current lifestyle of people prone way to oxidative stress and metabolic disturbances in the pathophysiology leading to disorders such as diabetes mellitus (DM). Type 2 DM is always of concern as it accounts for 90% of all the diabetic cases. The drugs used in treatment include a wide variety of classification such as sulfonylurea inhibitors, biguanides, thiazolidinediones, acarbose inhibitors etc and DPP-IV inhibitors are a newer treatment regimen recognised and approved by agencies like Food and Drug Administration (FDA) from the year 2005 in the treatment of T2DM. Dipeptidyl peptidase-4 (DPP-IV) enzyme primarily involved in the glucose homeostasis accounts for degradation of incretin hormones stimulating insulin secretion as a response to intake of food and maintaining blood sugar levels. Inhibitors of DPP-IV like Sitaglipitin, Vildagliptin, Aloglitpitin, Saxagliptin, Gemiglipitin, Teneglipitin etc prevents the degradation of hormones, thereby proving to be a method of treatment for T2DM. Cardiovascular complications including myocardial infarction, ischaemia, atherosclerosis associated in patients with T2DM are increasing on an alarming rate. Our review would focus on the analysing the effect of DPP-IV inhibitors in patients with cardiovascular defects and understand the mechanism involved.
Cite this article:
A. Kathiraven, R. Srimathi, Kathiravan. M.K. Exploring the Relationship of DPP-IV Inhibitors in the treatment of Diabetes and Cardiovascular Disease. Research Journal of Pharmacy and Technology. 2024; 17(8):3553-9. doi: 10.52711/0974-360X.2024.00555
Cite(Electronic):
A. Kathiraven, R. Srimathi, Kathiravan. M.K. Exploring the Relationship of DPP-IV Inhibitors in the treatment of Diabetes and Cardiovascular Disease. Research Journal of Pharmacy and Technology. 2024; 17(8):3553-9. doi: 10.52711/0974-360X.2024.00555 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-3
REFERENCES:
1. A randomized, double‐blind, controlled 26‐week trial (Release). Diabetes Metab Syndr Obes. 2017; 19(8): 1147-54 https://doi.org/10.1111/dom.12925
2. Hazaratali Panari, Vegunarani.M. Study on Complications of Diabetes Mellitus among the Diabetic Patients. Asian J. Nur. Edu. and Research. 2016; 6(2): 171-182
3. Papagianni M, Tziomalos K. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors. Hippokratia. 2015; Mar 19(3):195,
4. Pushpendra Kumar, Titi Xavier Mangalathil, Vikas Choudhary. An experimental study to assess the effectiveness of structured teaching programme on knowledge regarding the management of diabetes mellitus among G.N.M. students in selected nursing school at Sikar, Rajasthan. Asian J. Management. 2014; 5(3): 329-331
5. Guariguata L et.al; Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014; 103(2): 137-49. http://dx.doi.org/10.1016/j.diabres.2013.11.002
6. Winther JF, Bhatia S, Cederkvist L, Gudmundsdottir T, Madanat‐Harjuoja L, Tryggvadottir L, Wesenberg F, Hasle H, Sällfors Holmqvist A, ALiCCS Study Group. Risk of cardiovascular disease among Nordic childhood cancer survivors with diabetes mellitus: A report from adult life after childhood cancer in Scandinavia. Cancer. 2018; 124(22): 4393-400
7. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes. 2015; 6(13): 1246.http://dx.doi.org/10.4239/wjd.v6.i13.1246
8. Ambhore JP, Laddha PR, Nandedkar A, Ajmire PV, Chumbhale DS, Navghare AB, Kuchake VG, Chaudhari PJ, Adhao VS. Medicinal chemistry of non-peptidomimetic dipeptidyl peptidase IV (DPP IV) inhibitors for treatment of Type-2 diabetes mellitus: Insights on recent development. J. Mol. Struct. 2023; 1284: 135249
9. Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed. 2012; 2(5): 411-20 https://doi.org/10.1016/S2221-1691(12)60067-7
10. Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the UK: a cohort study using the general practice research database. Diabetes Care. 2006; 29(4): 798-804 https://doi.org/10.2337/diacare.29.04.06.dc05-1433
11. Evangelista I, Nuti R, Picchioni T, Dotta F, Palazzuoli A. Molecular dysfunction and phenotypic derangement in diabetic cardiomyopathy. Int. J. Mol. Sci. 2019; 20(13): 3264 https://doi.org/10.3390/ijms20133264
12. Hinnen D, Nielsen LL, Waninger A, Kushner P. Incretin mimetics and DPP-IV inhibitors: new paradigms for the treatment of type 2 diabetes. J Am Board Fam Med. 2006; 19(6): 612-20. DOI: https://doi.org/10.3122/jabfm.19.6.612
13. Gershell L. Type 2 diabetes market. Nat Rev Drug Discov. 2005; 4(5),367-8
14. Glovaci D, Fan W, Wong ND. Epidemiology of diabetes mellitus and cardiovascular disease. Curr. Cardiol. Rep. 2019; 21: 1-8.
15. Sincy Wilson, Sr. Symphoria. A Study to assess the effect of awareness Programme on Compliance to Insulin Therapy among Patients with Diabetes Mellitus (DM) in a Selected Community Health Centre, Thrissur District. Asian J. Nur. Edu. and Research. 2016; 6(4): 464-470.
16. Haffner S. Rationale for new American Diabetes Association Guidelines: are national cholesterol education program goals adequate for the patient with diabetes mellitus? Am. J. Cardiol. 2005; 96(4): 33-6 https://doi.org/10.1016/j.amjcard.2005.05.012
17. Khan SR. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome. Urol. Res. 2012; 40: 95-112.
18. Manoj Abraham M, Teh Shiueh Tyng, K. Rekha, Shanmugananth E, Kiruthika S. Comparison of Four Screening Methods for Diabetic Peripheral Neuropathy in Type 2 Diabetes Mellitus Patients: A Cross Sectional Study. Research J. Pharm. and Tech. 2018; 11(12): 5551-5558
19. Achike FI, To NH, Wang H, Kwan CY. Obesity, metabolic syndrome, adipocytes and vascular function: a holistic viewpoint. Clin. Exp. Pharmacol. Physiol. 2010; 38(1): 1-0. https://doi.org/10.1111/j.1440-1681.2010.05460.x
20. Hajar R. Risk factors for coronary artery disease: historical perspectives. Heart views: the Official Journal of the Gulf Heart Association. 2017; 18(3): 109
21. Stehouwer CD, Lambert J, Donker AJ, van Hinsbergh VW. Endothelial dysfunction and pathogenesis of diabetic angiopathy. Cardiovasc. Res. 1996; 34(1): 55-68. https://doi.org/10.1016/S0008-6363(96)00272-6
22. Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc. Diabetol., 2005; 4(1):1-1.
23. Abinaya. S.K, Vijey Aanandhi. M. Alogliptin – A Narrative Review. Research J. Pharm. and Tech. 2017; 10(7): 2421-2423.
24. Shom Prakash Kushwaha, Sunil Kumar Rawat, Pavan Kumar, Abhishek , Kishu Tripathi. Coupling Antioxidant and Antidiabetic assets of 2, 4-Thiazolidinedione Derivatives. Asian J. Pharm. Ana. 2011; 1(4): 71-73.
25. Pathak R, Bridgeman MB. Dipeptidyl peptidase-4 (DPP-4) inhibitors in the management of diabetes. Pharmacy and Therapeutics. 2010; 35(9): 509
26. Sandeep Goyal, V.K. Bansal, Dhruba Sankar Goswami, Suresh Kumar. sVascular Endothelial Dysfunction: Complication of Diabete Mellitus and Hyperhomocysteinemia. Research J. Pharm. and Tech. 2010; 3(3): 657-664
27. Rizzo MR, Barbieri M, Marfella R, Paolisso G. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-IV inhibition. Diabetes Care. 2012; 35 (10): 2076-82. https://doi.org/10.2337/dc12-0199
28. Smita S. Aher, Saroj P. Gajare, Ravindra B. Saudagar. Linagliptin: A Review on Therapeutic Role in Diabetes Mellitus. Research J. Pharm. and Tech. 2017; 10(9): 3233-3236.
29. Nakamura Y, Tsuji M, Hasegawa H, Kimura K, Fujita K, Inoue M, Shimizu T, Gotoh H, Goto Y, Inagaki M, Oguchi K. Anti‐inflammatory effects of linagliptin in hemodialysis patients with diabetes. Hemodial Int. 2014; 18(2): 433-42
30. Hong HC, Hwang HJ, Lee HJ, Lee MJ, Seo JA, Kim SG, Kim NH, Choi KM, Choi DS, Baik SH, Yoo HJ. The dipeptidyl peptidase-IV inhibitor (gemigliptin) inhibits the expression of vascular adhesion molecules and inflammatory cytokines in HUVECs via Akt-and AMPK-dependent mechanisms. Endocrine Abstracts. 2015; 37. Bioscientifica. DOI: 10.1530/endoabs.37.GP.16.03
31. Okuda Y, Omoto S, Taniura T, Shouzu A, Nomura S. Effects of teneligliptin on PDMPs and PAI-1 in patients with diabetes on hemodialysis. International Journal of General Medicine. 2022; 12: 65-71. https://doi.org/10.2147/IJGM.S1020701
32. Vanessa Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013; 19(32): 5695-703.
33. Ganesan S, Sangeetha R, Arivazhagan R, Swaminathan S. Exposure To Coal Mine Dust Predisposes Mine Workers to Oxidative Stress and Diabetes Mellitus. Research J. Pharm. and Tech. 2019; 12(9): 4107-4110.
34. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B. Mitochondria, oxidative stress and cell death. Apoptosis. 2007; 913-22. DOI 10.1007/s10495-007-0756-2
35. Kavita Chandramore. Review on Dipeptidyl Peptidase IV Inhibitors as a Newer Target for Diabetes Mellitus Treatment. Asian J. Pharm. Res. 2017; 7(4): 230-238
36. Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 2006; 212(2): 167-78. doi:10.1016/j.taap.2006.01.003
37. Ghosh A, Gao L, Thakur A, Siu PM, Lai CW. Role of free fatty acids in endothelial dysfunction. J. Biomed. Sci. 2017; 24(1): 1-5. DOI 10.1186/s12929-017-0357-5
38. Mair J, Hammerer-Lercher A, Puschendorf B. The impact of cardiac natriuretic peptide determination on the diagnosis and Management of Heart Failure. 2001; 577-578. https://doi.org/10.1515/CCLM.2001.093
39. Holaday JW. Cardiovascular effects of endogenous opiate systems. Annu. Rev. Pharmacol. Toxicol. 1983; 23(1): 541. https://doi.org/10.1146/annurev.pa.23.040183.002545
40. Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc. Res. 2005; Nov 69(2): 318-28. https://doi.org/10.1016/j.cardiores.2005.10.001
41. Vanderheyden M, Bartunek J, Goethals M, Verstreken S, Lambeir AM, De Meester I, Scharpé S. Dipeptidyl-peptidase IV and B-type natriuretic peptide. From bench to bedside. Clin. Chem. Lab. Med. 2009; 47(3): 248-52. https://doi.org/10.1515/CCLM.2009.065
42. Dal K, Ata N, Yavuz B, Sen O, Deveci OS, Aksoz Z, Yildirim AM, Uygungelen B, Akin KO, Beyan E, Ertugrul DT. The relationship between glycemic control and BNP levels in diabetic patients. Cardiol. J. 2014; 21(3): 252-6. DOI: 10.5603/CJ.a2013.0109
43. Liu F, Huang GD, Tang JZ, Peng YH. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway. Arch. Biol. Sci. 2015; 68(1): 207-16. DOI:10.2298/ABS150506143L
44. MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J. Diabetes. 2017; 8(5): 172. DOI: 10.4239/wjd.v8.i5.172
45. de Boer SA, Heerspink HJ, Juárez Orozco LE, van Roon AM, Kamphuisen PW, Smit AJ, Slart RH, Lefrandt JD, Mulder DJ. Effect of linagliptin on pulse wave velocity in early type 2 diabetes2 diabetes-A serial integrated backscatter-intravascular ultrasound study. Am. J. Cardiovasc. Dis. 2016; 6(4):153.
46. Cahn A, Raz I. Emerging gliptins for type 2 diabetes. Expert Opinion on Emerging Drugs. 2013; 18(2): 245-58. https://doi.org/10.1517/14728214.2013.807796
47. Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor–dependent and–independent pathways. Circulation. 2008; 117(18): 2340-50
48. Goodwill AG, Tune JD, Noblet JN, Conteh AM, Sassoon D, Casalini ED, Mather KJ. Glucagon-like peptide-1 (7–36) but not (9–36) augments cardiac output during myocardial ischemia via a Frank–Starling mechanism. Basic Res. Cardiol. 2014; 109:1-0.
49. Sirotkin AV. Cytokines: signalling molecules controlling ovarian functions. Int. J. Biochem. Cell Biol. 2011; 43(6): 857-61 doi:10.1016/j.biocel.2011.03.001
50. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta Mol Cell Res BBA-MOL Cell Res. 2014; 1843(11): 2563-82 http://dx.doi.org/10.1016/j.bbamcr.2014.05.014
51. Nagamine A, Hasegawa H, Hashimoto N, Yamada-Inagawa T, Hirose M, Kobara Y, Tadokoro H, Kobayashi Y, Takano H. The effects of DPP-4 inhibitor on hypoxia-induced apoptosis in human umbilical vein endothelial cells. J. Pharmacol. Sci. 2016; 133(1): 42-8. http://dx.doi.org/10.1016/j.jphs.2016.12.003
52. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B. Signal transducer and activator of transcription‐3, inflammation, and cancer: how intimate is the relationship?. Ann. N. Y. Acad. Sci. 2009; 1171(1): 59-76. https://doi.org/10.1111/j.1749-6632.2009.04911.x