Author(s): Nikunja Kishor Mishra, Amiyakanta Mishra, Pravat Kumar Sahoo, Rosy Priyadarshini

Email(s): montu.mph@gmail.com

DOI: 10.52711/0974-360X.2024.00580   

Address: Nikunja Kishor Mishra1*, Amiyakanta Mishra2, Pravat Kumar Sahoo3, Rosy Priyadarshini2
1Department of Pharmacology, College of Pharmaceutical Sciences, Puri (Affiliated to Odisha University of Health Sciences, Bhubaneswar), Baliguali, Puri-Konark Marine Drive Road, Puri, Odisha, India – 752004.
2Department of Pharmaceutics, College of Pharmaceutical Sciences, Puri (Affiliated to odisha university of Health Sciences, Bhubaneswar), Baliguali, Puri-konark Marine Drive Road, Puri, Odisha, India – 752004.
3Department of Pharmaceutics, Institute of Pharmacy and Technology Salipur, Cuttack, Odisha, India – 754202.
*Corresponding Author

Published In:   Volume - 17,      Issue - 8,     Year - 2024


ABSTRACT:
Spinal muscular atrophy (SMA) presents as a pediatric neuromuscular disorder resulting from mutations in the survival motor neuron 1(SMN1) gene, with an incidence of approximately 10-13 per 100,000 live births. This condition manifests primarily through muscle weakness and atrophy, particularly affecting the proximal limb muscles. A homozygous deletion of exon 7 in the SMN1 gene is the most common genetic mutation in SMA and serves as a sensitive diagnostic marker. This article comprehensively explores various aspects of SMA, including its types, diagnostic methods, and management strategies. Pulmonary care, gastrointestinal (GI) management, nutritional supplementation, orthopedic spinal care, and physiotherapy play crucial roles in delaying disease progression. Current pharmacological treatments for SMA are diverse and evolving. Notable among them is Zolgensma (formerly AVXS-101 or Onasemnogene abeparvovec), a gene replacement therapy utilizing an adeno-associated virus vector to boost functional SMN protein levels. Sodium vanadate, a phosphatase inhibitor, and risdiplam (RO703406) are agents that modulate SMN2 splicing to augment the production of functional SMN protein. Riluzole acts as a neuroprotective agent by preventing SMN deficiency, while reldesemtive (CK-2127107) is under development as a muscle-enhancing therapy to ameliorate skeletal muscle function during fatigue. While pharmacological therapies for SMA are advancing, a holistic approach involving comprehensive multidisciplinary care, encompassing pulmonary support, proper nutritional supplementation, and adept orthopedic management, significantly contributes to the effective management of SMA.


Cite this article:
Nikunja Kishor Mishra, Amiyakanta Mishra, Pravat Kumar Sahoo, Rosy Priyadarshini. Current Treatment Process and Challenges for Spinal Muscular Atrophy (SMA). Research Journal of Pharmacy and Technology. 2024; 17(8):3730-8. doi: 10.52711/0974-360X.2024.00580

Cite(Electronic):
Nikunja Kishor Mishra, Amiyakanta Mishra, Pravat Kumar Sahoo, Rosy Priyadarshini. Current Treatment Process and Challenges for Spinal Muscular Atrophy (SMA). Research Journal of Pharmacy and Technology. 2024; 17(8):3730-8. doi: 10.52711/0974-360X.2024.00580   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-28


REFERENCE:
1.    Werdnig G. Zwei fruhinfantile hereditare Falle von rogressive Muskel atrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage [Two early infatile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural bais; in German]. Archivfür Psychiatrie und Nervenkrankheiten. 1891; 22: 437-480. https://doi.org/10.1007/BF01776636.
2.    Hoffmann JU’ berchronischespinale Muskelatrophieim Kindesalter, auffamiliarer Basis [On chronic spinal muscular atrophy in childhood, withafamilial basis;in German]. Deutsche Zeitschriftfür Nervenheilkunde. 1893; 3(6): 427-470. https://doi.org/10.1007/BF01668496.
3.    Brzustowicz LM, Lehner T, Castilla LH, Penchaszadeh GK, Wilhelmsen KC, Daniels R, et al. Geneticmapping ofchronicchildhood–onset spinalmuscular atrophy to chromosome 5q 11.2-13.3.Nature.1990; 344: 540-41. https://doi.org/10.1038/344540a0.
4.    Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscularatrophy: clinical laboratory analysis of >72, 400 specimens. European Journal of Human Genetics. 2012; 20(1):27-32.https://doi.org/10.1038/ejhg.2011.134.
5.    Glascok J, Sampson J, Haidet-Phillips A, Connolly A, Darrase B, Dayb J, et al. Treatment algorithm for infants diagnosed with spinal muscularatrophythrough newborn screening. Journal of Neuromuscular Diseases. 2018; 5(2): 145-158. https://doi.org/10.3233/JND-180304
6.    Calucho M, Bernal S, Alias L, March F, Vencesla A, Rodriguez-Alvarez FJ, et al. Correlation between SMA type and SM2 copy number revisited: Ananalysis of 625 unrelated Spanishpatients and acompilation of 2834 reported cases. Neuromuscular Disorders. 2018; 28: 208-215. https://doi.org/10.1016/j.nmd.2018.01.003.
7.    Messina S. Newd irections for SMA Therapy. Journal of Clinical Medicine.2018; 7(9): 251. https://doi.org/10.3390/jcm7090251.
8.    MacLeod M J, Taylor JE, Lunt PW, Mathew CG, Robb SA. Parental onset spinal muscular atrophy. European Journal of Paediatric Neurology. 1999; 3(2): 65-72. https://doi.org/10.1053/ejpn.1999.0184.
9.    Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. European Journal of Paediatric Neurology.1999; 3(2): 49-51. https://doi.org/10.1053/ejpn.1999.0181.
10.    Felderhoff- Mueser U, Grohmann K, Harder A, Stadelmann C, Zerres K, Buhrer C, et al. Severe spinal muscular atrophy variant associated with congenital bone fractures. Journal of Child Neurology. 2002; 17: 718-721. https://doi.org/10.1177/088307380201700915.
11.    Bertini E, Berghes A, Bushby K, Estournet-Mathiaud B, Finkel RS, Hughes RA, et al. 134th ENMC International workshop: Outcome measures and treatment of spinal muscular atrophy,11-13 February 2005, Naarden, The Netherlands. Neuromuscular Disorders. 2005; 15(11): 802-816. https://doi.org/10.1016/j.nmd.2005.07.005.
12.    Oskoui M, Levy G, Garland CJ, Gray JM,O’Hagan J, De Vivo DC, et al. Thechanging Natural history of spinal muscular atrophy type 1. Neurology. 2007; 69: 931-6. https://doi.org/10.1212/01.wnl.0000290830.40544.b9.
13.    Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B, et al. Consensus statement for standard of care in spinal muscular atrophy. Journal of Child Neurology. 2007; 22(8): 1027-49. https://doi.org/10.1177/0883073807305788.
14.    Russman BS. Spinal muscular atrophy: clinical classifications and diseases heterogeneity. Journal of Child Neurology. 2007; 22(8): 946-51. https://doi.org/10.1177/0883073807305673.
15.    Sumner CJ. Molicular mechanisems of spinal muscular atrophy.  Journal of Child Neurology. 2007; 229(8):979-89.https://doi.org/10.1177/0883073807305787.
16.    Amico DA, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet Journal of Rare Diseases. 2011; 6(71): 1-10. https://doi.org/10.1186/1750-1172-6-71.
17.    Wirth  B, BrichtaL, HahnenE.Spinal muscular atrophy: from gene to therapy. Seminar in Pediatric Neurology. 2006; 13(2): 121-31. https://doi.org/10.1016/j.spen.2006.06.008.
18.    Kolb SJ, Kissel JT. Spinal muscular atrophy. Neurologic Clinics. 2015; 33(4): 8 31-846. https://doi.org/10.1016/j.ncl.2015.07.004.
19.    Hahnen E, Schonling J, Rudnik-Schoneborn S, Raschke H, Zerres K, Wirth B. Missense mutationsin exon 6 of the survival motor neuron gene in patients with Spinal muscular atrophy (SMA). Human Molecular Genetics. 1997; 6(5): 821-825. https://doi.org/10.1093/hmg/6.5.821.
20.    Mendonca RH, Matsui CJr, Polido GJ, Silva AMS, Kulicowski L, Dias AT, et al. Intragenic variants in the SMN1 gene determine the clinical phenotypein 5qSpinal muscular atrophy. Neuro Genetics. 2020; 6(5): e505. https://doi.org/10.1212/NXG.0000000000000505.
21.    Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: Controversies and challenges. Lancet Neurology. 2012; 11(5): 443-52. https://doi.org/10.1016/S1474-4422(12)70061-3.
22.    Oskoui M, Kaufmann P.Spinal muscular atrophy. Neuro therapeutics. 2008; 5: 499-506. https://doi.org/10.1016/j.nurt.2008.08.007.
23.    Tangsrud SE, Carlsen KC, Lund PI, Carlsen KH. Lungs function measurements in young children with Spinal muscular atrophy, a cross sectionalsurveyon theeffect of position andbracing. Archives of Disease in Childhood. 2001; 84(6): 521. https://doi.org/10.1136/adc.84.6.521.
24.    Innaccone ST. Modern Management of Spinal Muscular Atrophy. Journal of Child Neurology. 2007; 22: 974-8. https://doi.org/10.1177/0883073807305670.
25.    Grondard C, Biondi O, Armand AS, Lecolle S, Gaspera BD, Pariset C. et al. Regular exercise prolongs survival in a type-2 spinal muscular atrophy model mouse. The Journal of Neuroscience. 2005; 25(33): 7615-22. https://doi.org/10.1523/JNEUROSCI.1245-05.2005.
26.    Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, et al. Aclarubicin etreatment restores SMN levels to cells derived from type-1spinal muscular atrophy patients. Human Molecular Genetics. 2001; 10(24): 2841-2849. https://doi.org/10.1093/hmg/10.24.2841.
27.    Sivaramakrishnan M, Mc Cathy KD, Campagne S, Hubber S, Meier S. Bindingto SMN2PRE-Mrna-protein complex elicits specifi city for small molecule splicing modifiers. Nature Communications. 2017; 8(1): 1476. https://doi.org/10.1038/s41467-017-01559-4.
28.    Ewout JN, Talbot GK, Gilling water TH. Advances in therapy for spinal muscular atrophy: promises and challenges. Nature Reviews Neurology. 2018; 14(4): 214-224. https://doi.org/10.1038/nrneurol.2018.4.
29.    Angelozzi C, Bergo F, Tiziano FD, Martella A, Neri G, Brahe C. Salbutamol increases SMNmRNA and protein level sin spinal muscular atrophy cells. Journal of Medical Genetics. 2008; 45(1): 29-31. https://doi.org/10.1136/jmg.2007.051177.
30.    Hwee DT, Kennedy A, Ryans J, Russell AJ, JiaZ., Hinken, AC, et al. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93AALSmousemodel.PLoSOne 2014; 9(5): e96921. https://doi.org/10.1371/journal.pone.0096921.
31.    Messina S, S frameli M. New Treatmentsin Spinal Muscular Atrophy: Positive Results and New Challenges. Journal of Clinical Medicine. 2020; 9(7): 2222. https://doi.org/10.3390/jcm9072222.
32.    Lunn MR, Root DE, Martino AM, Flaherty SP, Kelly BP, Coovert DD. Indopro fen upregulates the survival motor neuron protein throughacyclo-oxygenase–independent mechanisem. Chemistry and Biology. 2004; 11: 1489-1493. https://doi.org/10.1016/j.chembiol.2004.08.024.
33.    Heier CR, Di Donato CJ. Translational readthrough by the aminoglycoside geniticine (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo. Human Molecular Genetics. 2009; 18: 1310-1322. https://doi.org/10.1093/hmg/ddp030.
34.    Bryson HM, Fulton B, Benfield P. Riluzole. Are view of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drug.1996; 52(4): 549-563. https://doi.org/10.2165/00003495-199652040-00010.
35.    Bach JR. The use of mechanical ventilation is appropriate in children with genetically proven spinal muscular atrophy type1: The motion for Pediatric Research Review. 2008; 9(1): 45-50. https://doi.org/10.1016/j.prrv.2007.11.003.
36.    Lesboareds JC, Cifuentes-Diaz C, Miroglio A, Joshi V, Bordet T, Kahn A, et al. Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Human Molecular Genetics. 2003; 12: 1233-1239. https://doi.org/10.1093/hmg/ddg143.
37.    Foust KD, Wang X, Mc Govern VL, Braun L, Bevan AK, Haidet MA, et al. Rescue of the spinal muscular atrophy type 1. Nature Biotechnology. 2010; 28(3): 271-274. https://doi.org/10.1038/nbt.1610.
38.    Passini M and Bu J. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. Journal of Clinical Investigation. 2010; 120(4): 1253-1264. https://doi.org/ 10.1172/JCI41615.
39.    Valori C and Ning K. Systemic Delivery of sc AAV 9 Expressing SMNP rolongs Survivalina Model of Spinal Muscular Atrophy. Science Translational Medicine. 2010; 2(35). https://doi.org/10.1126/scitranslmed.3000830.
40.    Patil PM, Chaudhari PD, Sahu M, Duragkar NJ. Review Article on Gene Therapy. Reserch Journal of Pharmacology and Pharmacodynamics. 2012; 4(2): 77-83.
41.    Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell. 2002; 110(3): 385-397. https://doi.org/10.1016/s0092-8674(02)00835-8.
42.    Rutkowski A, Chatwin M, Koumbourlis A, et al. 203rd ENMC international workshop: respiratory pathophysiology in congenital muscle disorders: implications for pro-active care and clinical research 13-15 December, 2013, Naarden, The Netherlands. Neuromuscular Disorder. 2015; 25: 353-8.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available