Author(s):
Nayak Deeksha Dayanand, Rajasekhar Chinta, Shama Prasada Kabbekodu, Arul Amuthan, Sathish Pai B, K Sreedhara Ranganath Pai, Suman Manandhar, Vasudha Devi
Email(s):
vasudha.devi@manipal.edu
DOI:
10.52711/0974-360X.2024.00577
Address:
Nayak Deeksha Dayanand1, Rajasekhar Chinta2, Shama Prasada Kabbekodu3, Arul Amuthan4,5, Sathish Pai B6, K Sreedhara Ranganath Pai7, Suman Manandhar7, Vasudha Devi1,8*
1Department of Pharmacology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
2Department of Pharmacology, Manipal University College, Melaka 75150, Malaysia.
3Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
4Division of Pharmacology, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
5Division of Siddha, Centre for Integrative Medicine and Research, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
6Department of Dermatology, Venereology and Leprosy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
7Department of Pharmaco
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Psoriasis is one of the chronic inflammatory conditions with multifactorial aetiology. Even though there are different treatments available, there is no cure for psoriasis. A Siddha polyherbal formulation, Sivanar vembu kuzhi thailam (SVKT), is used to treat various skin diseases. In this study, methanolic extract of SVKT was analysed using gas chromatography–mass spectrometry (GC-MS) which showed the presence of 86 compounds. They were further subjected to molecular docking to find the effect of SVKT on inflammatory proteins, IL-17A and TNF-a, involved in the pathogenesis of psoriasis. Four shortlisted compounds from SVKT exhibited their inhibitory potential on IL-17A with binding energy varying between -8.2 to Add- in fornt of -6.6 kcal/mol and three compounds on TNF-a with binding energy varying between -7.8 to -5.6 kcal/mol. Pharmacokinetic properties (Absorption, Distribution, Metabolism, Excretion and Toxicity-ADMET) were also evaluated in silico which showed favourable features. 2-(hydroxymethyl)-6-octylsulfanyloxane-3,4,5-triol and a-Lactose among the shortlisted constituents, inhibited both proteins through exhibiting multiple interactions. Hence this study provides valuable insights into the inhibitory effect of phytochemicals present in SVKT on IL-17A and TNF-a which may pave way to the discovery of new drugs to treat psoriasis.
Cite this article:
Nayak Deeksha Dayanand, Rajasekhar Chinta, Shama Prasada Kabbekodu, Arul Amuthan, Sathish Pai B, K Sreedhara Ranganath Pai, Suman Manandhar, Vasudha Devi. Phytoconstituents of a Traditional Oil Formulation Inhibits IL-17A and TNF-α involved in Psoriasis: A Molecular Docking Study. Research Journal of Pharmacy and Technology 2024; 17(8):3707-6. doi: 10.52711/0974-360X.2024.00577
Cite(Electronic):
Nayak Deeksha Dayanand, Rajasekhar Chinta, Shama Prasada Kabbekodu, Arul Amuthan, Sathish Pai B, K Sreedhara Ranganath Pai, Suman Manandhar, Vasudha Devi. Phytoconstituents of a Traditional Oil Formulation Inhibits IL-17A and TNF-α involved in Psoriasis: A Molecular Docking Study. Research Journal of Pharmacy and Technology 2024; 17(8):3707-6. doi: 10.52711/0974-360X.2024.00577 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-25
REFERENCES:
1. Parisi R, Symmons DP, Griffiths CE, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. The Journal of Investigative Dermatology. 2013; Feb; 133(2): 377-85. doi: 10.1038/jid.2012.339.
2. Dogra S, Mahajan R. Psoriasis: Epidemiology, clinical features, co-morbidities, and clinical scoring. Indian Dermatology Online Journal. 2016; Nov-Dec; 7(6): 471-80. doi:10.4103/2229-5178.193906.
3. Leonardi CL, Powers JL, Matheson RT, Goffe BS, Zitnik R, Wang A, Gottlieb AB. Etanercept as monotherapy in patients with psoriasis. The New England Journal of Medicine. 2003; Nov 20; 349(21): 2014-22. doi: 10.1056/NEJMoa030409.
4. Gottlieb AB, Evans R, Li S, Dooley LT, Guzzo CA, Baker D, Bala M, Marano CW, Menter A. Infliximab induction therapy for patients with severe plaque-type psoriasis: a randomized, double-blind, placebo-controlled trial. Journal of the American Academy of Dermatology. 2004; Oct; 51(4): 534-42. doi: 10.1016/j.jaad.2004.02.021.
5. Gordon KB, Langley RG, Leonardi C, Toth D, Menter MA, Kang S, Heffernan M, Miller B, Hamlin R, Lim L, Zhong J, Hoffman R, Okun MM. Clinical response to adalimumab treatment in patients with moderate to severe psoriasis: double-blind, randomized controlled trial and open-label extension study. Journal of the American Academy of Dermatology. 2006; Oct; 55(4): 598-06. doi: 10.1016/j.jaad.2006.05.027.
6. Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, Papp K, Puig L, Nakagawa H, Spelman L, Sigurgeirsson B, Rivas E, Tsai TF, Wasel N, Tyring S, Salko T, Hampele I, Notter M, Karpov A, Helou S, Papavassilis C. Secukinumab in plaque psoriasis--results of two phase 3 trials. The New England journal of medicine. 2014; Jul 24; 371(4): 326-38. doi: 10.1056/NEJMoa1314258.
7. Vijayalakshmi A, Ravichandiran V, Malarkodi V, Nirmala S, Jayakumari S. Screening of flavonoid "quercetin" from the rhizome of Smilax china Linn. for anti-psoriatic activity. Asian Pacific Journal of Tropical Biomedicine. 2012; Apr; 2(4): 269-75. doi: 10.1016/S2221-1691(12)60021-5.
8. Thas JJ. Siddha medicine--background and principles and the application for skin diseases. Clinics in Dermatology. 2008; Jan-Feb; 26(1): 62-78. doi: 10.1016/j.clindermatol.2007.11.010.
9. Arun D, Saraswathi U. Antioxidant potential of Shivanarvembu Kuzhi Thailam. International Journal of Herbal Medicine. 2015; April; 3(3): 1-5.
10. Shenoy G, Shenoy S, Pai BS, Kumar N, Amuthan A, Shetty M, Rao M, Pai K, Rao KB. A Subchronic 90-day Oral Toxicity Study of Sivanar Vembu Khuzhi Thailam in Rats. Journal of International Dental and Medical Research. 2022; 15(1): 88-93.
11. Amuthan A, Santhi M. Cost effective Management of Chronic Psoriasis using safe Siddha herbal drugs – A Case Report. Journal of Ayurvedic and Herbal Medicine. 2020; 6(1): 9-11. doi:10.31254/jahm.2020.6103.
12. Philips A, Philip S, Arul V, Padmakeerthiga B, Renju V, Santha S, Sethupathy, S. Free radical scavenging activity of leaf extracts of Indigofera aspalathoides - An in vitro analysis. Journal of Pharmaceutical Sciences and Research. 2010; 2(6): 322-28.
13. Tamilselvi N, Dhamotharan RPK, Krishnamoorthy P, Arumugam P, Sagathevan E. Antifungal Activity of Indigofera aspalathoides (Shivanar Vembu) Vahl ex Dc . Durg Invent Today. 2011; 3(11): 277-79.
14. Elangovan K, Thanigaviel S, Shahinbanu Z, Murugesan K. Phytochemical evaluation, in vitro antioxidant and antibacterial potential of indigofera aspalathoides. Int J of Pharmacy and Biological Sciences. 2014; 4(1): 161-68.
15. Kumar SS, Rao MR, Balasubramanian MP. Antiproliferative role of Indigofera aspalathoides on 20 methylcholanthrene induced fibrosarcoma in rats. Asian Pacific journal of tropical biomedicine. 2012; Dec; 2(12): 966-74. doi: 10.1016/S2221-1691(13)60008-8.
16. Rajaram C, Nelson KS, Sheeba TS, Manohar R, Sumanjali C. Neuroprotective Activity of the Methanolic Extract of Indigofera aspalathoides against Scopalamine induced Alzheimer's Disease in Experimental Rats. Research Journal of Pharmacy and Technology. 2021; 14(10): 5163-8. doi: 10.52711/0974-360X.2021.00898.
17. Kulkarni YA, Agarwal S, Garud MS. Effect of Jyotishmati (Celastrus paniculatus) seeds in animal models of pain and inflammation. Journal of Ayurveda and integrative medicine. 2015; Apr-Jun; 6(2): 82-8. doi: 10.4103/0975-9476.146540.
18. Vasudev P, Shreedhara CS, Chandrashekar KS, Aravinda P, Venkatesh K. Cognitive Enhancement and Neuroprotective Effects of Ancient Ayurvedic Medicinal Plant Celastrus Paniculatus: An Overview. Research Journal of Pharmacy and Technology. 2016; 9(8): 1295-98. doi: 10.5958/0974-360X.2016.00246.8.
19. Diana VA, Sunanda S, Krishna CB, Jajisree A, Ramesh C. Psychopharmacological Screening of Methanolic Extract of Celastrus paniculatus Willd. whole plant in Mice. Research Journal of Pharmacology and Pharmacodynamics. 2012; 4(4): 245-50.
20. Vijay Y, Vimal Y, Jain KS, Singh VK, Prajapati SK. Phytochemical Analysis and Comparative Anticonvulsant Activity of Celastrus paniculatus Willd. MES Induced Seizure in Mice. Asian Journal Research in Chemistry. 2011; Oct; 4(10): 1553-56.
21. Jayaseelan M, Arumugam T, Thangaraj N. Evaluation of antioxidant and anti-inflammatory activities of Corallocarpus epigaeus (Hook. F.) rhizomes. International Journal of Pharmacuetical and Biomedical Research. 2014; 5(1): 18-24.
22. Amruta YV, Mohd BM, Panjwani MA. Renoprotective effect of Corallocarpus epigaeus in Nephropathy in Wistar Rats. Research Journal of Pharmacy and Technology. 2020; 13(7): 3163-68. doi: 10.5958/0974-360X.2020.00559.4.
23. Uthrapathy S, Shabi MM, Krishnamoorthy G. Ravindhran D, Rajamanickam VG, Dubey GP. Analgesic and anti-arthritic effect of Corallocarpus epigaeus. Acta Bioquímica Clínica Latinoamericana. 2011; 45(4): 749-56.
24. Ariharan VN, Devi VNM, Parameswaran NK, Prasad PN. Antibacterial activity of Sivanar Vembu (Indigofera aspalathoides) against some human pathogenic bacteria. Journal of Chemical and Pharmaceutical Research. 2015; 7(3): 937-41.
25. Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. International Journal of Molecular Sciences. 2019; Mar 23; 20(6): 1475. doi: 10.3390/ijms20061475.
26. Basavaraj KH, Ashok NM, Rashmi R, Praveen TK. The role of drugs in the induction and/or exacerbation of psoriasis. International Journal of Dermatology. 2010; Dec; 49(12): 1351-61. doi: 10.1111/j.1365-4632.2010.04570. x.
27. Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, Cao W, Wang YH, Su B, Nestle FO, Zal T, Mellman I, Schröder JM, Liu YJ, Gilliet M. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007; Oct 4; 449(7162): 564-9. doi: 10.1038/nature06116.
28. Gilliet M, Lande R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Current opinion in immunology. 2008; Aug; 20(4): 401-7. doi: 10.1016/j.coi.2008.06.008.
29. Ganguly D, Chamilos G, Lande R, Gregorio J, Meller S, Facchinetti V, Homey B, Barrat FJ, Zal T, Gilliet M. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. The Journal of Experimental Medicine. 2009; Aug 31; 206(9): 1983-94. doi: 10.1084/jem.20090480.
30. Khaledi M, Sharif Makhmal Zadeh B, Rezaie A, Nazemi M, Safdarian M, Nabavi MB. Chemical profiling and anti-psoriatic activity of marine sponge (Dysidea avara) in induced imiquimod-psoriasis-skin model. PLoS One. 2020; Nov 30; 15(11): e0241582. doi: 10.1371/journal.pone.0241582.
31. Zia K, Ashraf S, Jabeen A, Saeed M, Alam MN, Ahmed S, Rehaily AJ, Haq JU. Identification of potential TNF ‑ α inhibitors from in silico to in vitro studies. Scientific Reports. 2020; Dec; 1-9. doi:10.1038/s41598-020-77750-3.
32. Shivaleela B, Srushti SC, Shreedevi SJ, Babu RL. Thalidomide ‑ based inhibitor for TNF ‑ α: designing and Insilico evaluation. Future Journal of Pharmaceutical Sciences. 2022; 8(5): 1-10. doi:10.1186/s43094-021-00393-2.