Author(s):
Indri Ngesti Rahayu, Asami Rietta Kumala, Dody Taruna, Stefanus Djoni Husodo, Eric Mayo Dagradi, Judya Sukmana
Email(s):
drindringestirahayu@gmail.com
DOI:
10.52711/0974-360X.2024.00573
Address:
Indri Ngesti Rahayu1*, Asami Rietta Kumala1, Dody Taruna1, Stefanus Djoni Husodo1, Eric Mayo Dagradi1, Judya Sukmana2
1Lecturer, Department of Physiology, Faculty of Medicine, Hang Tuah University, Jl. Gadung 1 West Wing of Ramelan Navy Hospital Surabaya, Surabaya, East Java, Indonesia.
2Lecturer, Department of Pathology, Faculty of Medicine, Hang Tuah University, Jl. Gadung 1 West Wing of Ramelan Navy Hospital Surabaya, Surabaya, East Java, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Background: Background: Type 2 Diabetes Mellitus (T2DM) is characterized by disrupted glucose metabolism, leading to hyperglycemia and insulin resistance, often associated with Secondary Hypertension (SH). Over 80% of SH patients exhibit glucose intolerance, with nearly 30% developing T2DM. There is a strong interaction between T2DM and NAFLD, representing a complex two-way relationship that influences the prognosis of the two diseases. Catfish oil extract boasts unsaturated fatty acids, including DHA, EPA, omega-3, vitamins A, B6, B12, D, and amino acids. Objective: This study aims to assess the impact of Pangasius sp. (catfish) oil extract administration on serum AST and ALT levels, as well as liver tissue MDA and CAT levels in alloxan-induced Wistar rats (Rattus norvegicus). Materials and Methods: Employing a pure experimental approach with a post-test-only control group design, three groups of 9 white male rats (Rattus norvegicus), along with one extra male rat, were included.K1 served as the negative control group (Wistar rats not subjected to any treatment). K2 acted as the positive control group (Wistar rats subjected to alloxan-induced diabetes at 150mg/kg BW). K3 represented the treatment group (diabetic model rats treated with catfish oil extract at 73mg/kg BW). Serum AST and ALT levels, as well as MDA and CAT levels in liver tissue, were measured at the study's conclusion. Results: The highest mean MDA levels in white rat liver tissue were K2 (3034.00 + 525.25 nmol/g), and the lowest was K3(2909.33+351.01nmol/g); the mean CAT liver tissue levels in rats the highest was K1 (1063.42+133.36U/mg), and the lowest was K3(894.78+132.93U/mg), the highest mean serum ALT levels of white rats was K2(230.34+63,58 U/L), and the lowest was K1(151.54+23.12 U/L) and the highest mean serum AST level in rats was K2(448.79+618.90U/L), and the lowest was K1(61.01+14.70U/L). Conclusion: Giving catfish oil supplementation can repair the damage in liver tissue, as evidenced by reductions in MDA levels and serum ALT and AST levels in diabetic model rats within the treatment group. Alloxan induction did not affect liver tissue CAT levels, as evidenced by a consistent decrease in liver tissue CAT levels in both the positive control and treatment groups.
Cite this article:
Indri Ngesti Rahayu, Asami Rietta Kumala, Dody Taruna, Stefanus Djoni Husodo, Eric Mayo Dagradi, Judya Sukmana. Research Journal of Pharmacy and Technology. 2024; 17(8):3676-4. doi: 10.52711/0974-360X.2024.00573
Cite(Electronic):
Indri Ngesti Rahayu, Asami Rietta Kumala, Dody Taruna, Stefanus Djoni Husodo, Eric Mayo Dagradi, Judya Sukmana. Research Journal of Pharmacy and Technology. 2024; 17(8):3676-4. doi: 10.52711/0974-360X.2024.00573 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-21
REFERENCES:
1. Sari NKP. Wande IN. Suega IK. Wirawati IAP. Mahartini NN. Herawati S. The relationship between hepcidin and anemia in controlled and uncontrolled Type-2 Diabetes Mellitus (T2DM) patients at Sanglah Hospital, Bali, Indonesia. Indonesia Journal of Biomedical Science. 2021; Dec 4; 15(2): 140–4. https://doi.org/10.15562/ijbs.v15i2.361
2. Coman LI. Coman OA. Bădărău IA. Păunescu H.Ciocîrlan M. Association between Liver Cirrhosis and Diabetes Mellitus: A Review on Hepatic Outcomes. J Clin Med. 2021; Jan 12; 10(2): 262. https://doi.org/10.3390/jcm10020262
3. Rao UM. Phenyl Propanoid Glycoside, An Eleutheroside derivative in the Regulation Carbohydrate Metabolism in Hepatic Tissues in T2DM experimental Rats. Res J Pharm Technol. 2019; 12(1): 283. https://doi.org/10.5958/0974-360X.2019.00053.2
4. Caussy C. Aubin A. Loomba R. The Relationship Between Type 2 Diabetes, NAFLD, and Cardiovascular Risk. Curr Diab Rep. 2021 May 19; 21(5): 15. https://doi.org/10.1007/s11892-021-01383-7
5. Menezes FR e. Diabetes Self-Management Education (DSME) effectiveness in people with Type 2 Diabetes Mellitus (T2DM)- A Systematic review. International Journal of Advances in Nursing Management. 2023; 11(3): 210–4. https://doi.org/10.52711/2454-2652.2023.00048
6. Mishra NK. Mishra A. Priyadarshini R. Non-Alcoholic Fatty Liver Disease (NAFLD) and its Recent Therapeutic Strategies. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(3): 119–26. https://doi.org/10.52711/2321-5836.2023.00022
7. Kumar R. Hepatogenous diabetes: An underestimated problem of liver cirrhosis. Indian J Endocrinol Metab. 2018; 22(4): 552. https://doi.org/10.4103/ijem.IJEM_79_18
8. Sherif ZA. Saeed A. Ghavimi S. Nouraie SM. Laiyemo AO. Brim H. et al. Global Epidemiology of Nonalcoholic Fatty Liver Disease and Perspectives on US Minority Populations. Dig Dis Sci. 2016; May 1; 61(5): 1214–25. https://doi.org/10.1007/s10620-016-4143-0
9. Maryam S. Arsani NKA. Tangguda S. Grape (Vitis vinifera L.) skin extract reduced levels of SGPT and SGOT and improved the liver tissue structure of Wistar rats (Rattus novergicus) fed a high-cholesterol diet. Bali Medical Journal. 2022; Oct 13; 11(3): 1404–8. https://doi.org/10.15562/bmj.v11i3.3602
10. Ghufran M. Budi Daya Ikan Patin di Kolam Terpal. 1st ed. Yogyakarta: Penerbit Lily; 2010.
11. Panagan AT. Yohandini H.Gultom JU. AnalisisKualitatif dan Kuantitatif Asam Lemak Tak Jenuh Omega-3 dariMinyak Ikan Patin (Pangasius pangasius) dengan Metoda Kromatografi Gas. Jurnal Penelitian Sains. 2011; 14(4): 38–42. https://doi.org/10.56064/jps.v14i4.204
12. Rukmana H.Yudirachman H. Sukses Budi Daya Ikan Patin SecaraIntensif. 1st ed. Yogyakarta: Penerbit Lily; 2016.
13. Zainuddin M. MetodologiPenelitianKefarmasian dan Kesehatan. In: MetodologiPenelitian. 1st ed. Surabaya: Airlangga University Press; 2011.
14. Ridwan E. Ethical Use of Animals in Medical Research. Journal Of The Indonesian Medical Association. 2013; 63(3): 112–6.
15. Sastroasmoro S. Ismael S. Perkiraan Besar Sampel. In: Dasar-dasar Metodologi Penelitian Klinis. 4th ed. Jakarta: Sagung Seto; 2011. p. 348–82.
16. Andriani DP. Metode Sampling [Internet]. 2015 [cited 2019 Nov 16]. Available from: www.debrina.lecture.ub.ac.id
17. Hidayaturrahmah H. Santoso HB. Nurlely N. ProfilGlukosa Darah Tikus Putih Setelah Pemberian Ekstrak Minyak Ikan Patin (Pangasius hypopthalmus) Sebagai Alternatif Antidiabetes. Jurnal Pharmascience. 2017; Nov 5; 4(2). http://dx.doi.org/10.20527/jps.v4i2.5775
18. Julaikha A. Karakteristik Minyak Ikan Dari Belly Flap Patin Siam (Pangasius hypopthalmus) Pada Berbagai Tahap Proses Pemurnian. Bogor: IPB; 2014.
19. Hastarini E. Fardiaz D. Irianto HE. Budhijanto S. Karakteristik Minyak Ikan dari Limbah Pengolahan Filet Ikan Patin Siam (Pangasius hypopthalmus) dan Patin Jambal (Pangasius djambal). Agritech. 2012; 32(4): 403–10. https://doi.org/10.22146/agritech.9584
20. Miaffo D. Kamgue GO. Tebou NL. Temhoul CMM. Kamanyi A. Antidiabetic and antioxidant potentials of Vitellaria paradoxa barks in alloxan-induced diabetic rats. Clinical Phytoscience. 2019; Dec 19; 5(1): 44. https://doi.org/10.1186/s40816-019-0141-z
21. Rohilla A. Ali S. Alloxan Induced Diabetes: Mechanisms and Effects. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2012; 3(2).
22. Saifi A. Chauhan R. Dwivedi J. Development of a polyherbal formulation FMST and evaluation for antidiabetic activity in alloxan induced diabetic rats. Asian Journal of Pharmaceutical Research. 2017; 7(1): 1–7. https://doi.org/10.5958/2231-5691.2017.00001.6
23. Beula SJ. Suthakaran R. Viswaja M. Shankar CH. Lakshmi GS. Anti-diabetic effect of Gymnemasylvestre an Alloxan-Induced Diabetic in Male Albino Wistar Rats. Asian Journal of Pharmacy and Technology. 2023; 13(1): 34–40. https://doi.org/10.52711/2231-5713.2023.00007
24. Struck MB. Andrutis KA. Ramirez HE. Battles AH. Effect of a short-term fast on ketamine-xylazine anesthesia in rats. Journal of American Association for Labortory Animal Science. 2011; 50(3): 344–8.
25. Nugroho R. Mengenal Mencit Sebagai Hewan Laboratorium. 1st ed. Samarinda: Mulawarman University Press; 2018.
26. Putri MEC. Pranitasari N. Pengaruh Pemberian Ekstrak Jambu Biji (Psidium guajava) Terhadap Kadar Trigliserida Darah Tikus Putih (Rattus norvegicus) Jantan Galur Wistar Yang Diinduksi Deksametason. Hang Tuah Medical Journal. 2018; 16(1).
27. Adiwinata R. Kristanto A. Christianty F. Richard T. Edbert D. Tatalaksana Terkini Perlemakan Hati Non Alkoholik. JurnalPenyakit Dalam Indonesia. 2017; Jan 27; 2(1): 53. https://doi.org/10.7454/jpdi.v2i1.65
28. Hidayati R. Korelasiantara Kecepatan Aliran Vena Porta denganIndeks Massa Tubuh pada Overweight denganatautanpa Non Alcoholic Fatty Liver Disease. Yogyakarta: Bagian Radiologi Fakultas Kedokteran Universitas Gadjah Mada; 2013.
29. Suvarna SHI. R V. Moodithaya SS. Indices of Inflammation, Oxidative Stress and DNA damage in T2DM patients with and without Insulin Therapy. Res J Pharm Technol. 2023; Apr 29; 1907–12. https://doi.org/10.52711/0974-360X.2023.00313
30. Boyer TD. Manns MP. Sanyal AJ. Zakim D. Zakim and Boyer’s Hepatology: A Textbook of Liver Disease. 6th ed. Philadelphia: Elsevier; 2012.
31. Riswanto R. Sumandjar T. Redhono D. Kurniawan R. Rahman A. The effect of ethyl acetate fraction of Moringa oleifera leaves on neutrophil and MDA levels in the improvement of liver dysfunction in male rats with sepsis model. Bali Medical Journal. 2020 Dec 1; 9(3): 721–4. https://doi.org/10.15562/bmj.v9i3.1850
32. Sumandjar T. Purwanto B. Riswanto R. Rahman A. The effects of ethyl acetate fraction of Moringa oleifera leaves on kidney and liver function in sepsis rat model. Bali Medical Journal. 2020; Apr 1; 9(1): 271–5. https://doi.org/10.15562/bmj.v9i1.1681
33. Putra EMF. Maimunah U. Liver function characteristics of COVID-19 patients with obesity at Dr. Soetomo Hospital: case series. Bali Medical Journal. 2022; Nov 29; 11(3): 1795–9. https://doi.org/10.15562/bmj.v11i3.3727
34. Sudha T. Devi DA. Kaviarasan L. Antihyperlipidemic effect of Stevia rebaudiana on Alloxan Induced Diabetic Rats. Asian Journal of Pharmacy and Technology. 2017; 7(4): 202. https://doi.org/10.5958/2231-5713.2017.00031.9
35. Fitriana I. Wijayanti AD. Sari PW. Satria RGD. Setiawan DCB. Fibrianto YH. et al. Kadar Malondialdehid Tikus Diabetes Melitus Tipe 2 denganTerapiEkstrak Media Penumbuh Sel Punca Mesenkimal. Acta Vet Indones. 2017; Jul 10; 5(1): 29–36. https://doi.org/10.29244/avi.5.1.29-36
36. Ayala A. Muñoz MF. Argüelles S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid Med Cell Longev. 2014; 2014: 1–31. https://doi.org/10.1155/2014/360438
37. Halliwell B. Gutteridge J. Free radicals in biology and medicine. 5th ed. Oxford: Oxford University Press; 2015.
38. Martini F. Nath J.Bartholomeuw E. Fundamentals of anatomy & Physiology. 9th ed. San Fransisco: Pearson; 2012.
39. Handajani F. Oksidan dan antioksidan pada beberapapenyakit dan proses penuaan. Sidoarjo: Zifatama Jawara; 2019.
40. Shah VV. Shah VK. Sheth NR. Patel MM. Hepatoprotective and Anti-inflammatory activities of Hydroalcoholic extract of Bark of Erythrina indica. Research Journal of Pharmacology and Pharmacodynamics. 2017; 9(4): 189. https://doi.org/10.5958/2321-5836.2017.00033.7
41. Ahmad KT. Singh PR. Garg H. Evaluation of Polyherbal preparation of Livina against Ethanol Induced Liver Dysfunction. Asian Journal of Research in Pharmaceutical Sciences. 2022; Aug 10; 171–6. https://doi.org/10.52711/2231-5659.2022.00029
42. Muthukumaran P. Begum VH. Effect of Poorna Chandrodayam Chendooram (PCM-Metallic Drug) on Lipid Profile, Liver Function and Kidney Function Parameters of Rats. Asian Journal of Pharmaceutical Analysis. 2020; 10(1): 27. https://doi.org/10.5958/2231-5675.2020.00006.X
43. Parker HM. Johnson NA. Burdon CA. Cohn JS. O’Connor HT. George J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J Hepatol. 2012; Apr; 56(4): 944–51. https://doi.org/10.1016/j.jhep.2011.08.018
44. Liebig M. Dannenberger D. Vollmar B. Abshagen K. Endogenously increased n-3 PUFA levels in fat-1 transgenic mice do not protect from non-alcoholic steatohepatitis. Hepatobiliary Surgery and Nutrition. 2019; 8(5): 447-458 https://doi.org/10.21037/hbsn.2019.04.03
45. Lee CH. Fu Y. Yang SJ. Chi CC. Effects of Omega-3 Polyunsaturated Fatty Acid Supplementation on Non-Alcoholic Fatty Liver: A Systematic Review and Meta-Analysis. Nutrients. 2020; 12(9): 2769. https://doi.org/10.3390/nu12092769
46. Maina A. Lochmann R. Rawles SD. Rosentrater K. Digestibility of Conventional and Novel Dietary Lipids in Channel Catfish Ictalurus punctatus. Animal (Basel). 2023; 13(9): 1456 https://doi.org/10.3390/ani13091456