Author(s):
Riga Riga, Mauline Adia Silvani, Wandi Oktria, Suryelita Suryelita, Sri Benti Etika, Bali Yana Fitri, Sonni Maurit Benu, Mariam Ulfah, Fitri Yuranda
Email(s):
rigakimia@fmipa.unp.ac.id
DOI:
10.52711/0974-360X.2024.00571
Address:
Riga Riga1*, Mauline Adia Silvani1, Wandi Oktria1, Suryelita Suryelita1, Sri Benti Etika1, Bali Yana Fitri1, Sonni Maurit Benu2 , Mariam Ulfah3, Fitri Yuranda1,4
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl. Prof. Dr. Hamka, Padang, Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institute Teknologi Bandung, Jl. Ganesha 10, Bandung, Indonesia.
3Department of Pharmacy, STIKES Muhammadiyah Cirebon, Cirebon, Indonesia.
4Department of Environmental Engineering, Faculty of Engineering, Universitas Andalas, Padang, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Fungal Phyllosticta capitalensis is reported to produce secondary metabolites with important bioactivities, i.e., antibacterial and antioxidant. This is the first time that the fungal P. capitalensis has been isolated from Andrographis paniculata twigs. Secondary metabolites isolation from the extract of the fungus P. capitalensis was performed using several techniques of chromatography, i.e., vacuum liquid chromatography and column chromatography, to obtain two pure compounds (1 and 2). Both compounds were determined for their structures using analyzing data of spectroscopy of NMR and FT-IR. Based on the analysis, compounds 1 and 2 were ergosterol and ergosterol peroxide, respectively. Both steroids were evaluated for their bioactivities following agar dilution method for antibacterial activity. Compound 2 was more active against three bacterial strains than compound 1. Based on the structure-activity relationship, presence of peroxide in C-5 and C-8 increases the bioactivity of ergosterol derivatives. Interestingly, herein, ergosterol peroxide (2) is firstly reported f from fungal P. capitalensis.
Cite this article:
Riga Riga, Mauline Adia Silvani, Wandi Oktria, Suryelita Suryelita, Sri Benti Etika, Bali Yana Fitri, Sonni Maurit Benu, Mariam Ulfah, Fitri Yuranda. Isolation, Structure Elucidation and Antibacterial activity of Secondary Metabolites from Fungal Phyllosticta capitalensis. Research Journal of Pharmacy and Technology. 2024; 17(8):3663-8. doi: 10.52711/0974-360X.2024.00571
Cite(Electronic):
Riga Riga, Mauline Adia Silvani, Wandi Oktria, Suryelita Suryelita, Sri Benti Etika, Bali Yana Fitri, Sonni Maurit Benu, Mariam Ulfah, Fitri Yuranda. Isolation, Structure Elucidation and Antibacterial activity of Secondary Metabolites from Fungal Phyllosticta capitalensis. Research Journal of Pharmacy and Technology. 2024; 17(8):3663-8. doi: 10.52711/0974-360X.2024.00571 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-19
REFERENCES:
1. Suryan L. Aruna AS. Namasivayam KR. Screening of antibacterial activity of endophytic fungi Phoma europhyrena against human pathogenic bacteri. Research Journal of Pharmacy and Technology. 2016; 9(4): 437-439. doi: 10.5958/0974-360X.2016.00080.9
2. Gopi K. Jayaprakashvel M. Endophytic Fungi as Novel Bioresource for Biomedical Applications. Research Journal of Pharmacy and Technology. 2017; 10(11): 4114-4115. doi: 10.5958/0974-360X.2017.00748.X
3. Meenambiga SS. Rajagopal K. Shevalkar M. Endophytic Fungi, A Novel source in the treatment of Oral infections. Research Journal of Pharmacy and Technology. 2020; 13(6): 2936-2942. doi: 10.5958/0974-360X.2020.00520.X
4. Gunasekaran S. Sundaramoorthy S. Anitha U. Sathiavelu M. Arunachalam S. Endophytic Fungi with Antioxidant Activity- A Review. Research Journal of Pharmacy and Technology. 2015; 8(6): 731-737. doi: 10.5958/0974-360X.2015.00116.X
5. Akila SJ. Krishnaveni C. Isolation, Identification and Molecular Characterization of Endophytic Fungi from the leaves of Coelogyne species, and their role as an Antimicrobial agent. Research Journal of Pharmacy and Technology. 2021; 14(11): 5613-7. doi: 10.52711/0974-360X.2021.00976
6. Handayani D. Rivai H. Mulyana R. Suharti N. Rasyid R. Hertiani T. Antimicrobial and cytotoxic activities of endophytic fungi isolated from mangrove plant Sonneratia alba Sm. Journal of Applied Pharmaceutical Science. 2018; 2(8): 49-53. http://dx.doi.org/10.7324/JAPS.2018.8207
7. Vardhana J. Kathiravan G. Dhivya R. Biodiversity of Endophytic Fungi and its Seasonal Recurrence from Some Plants. Research Journal of Pharmacy and Technology. 2017; 10(2): 490-496. doi: 10.5958/0974-360X.2017.00098.1
8. Shylaja G. Shoba S. Uma A. Mythili S. Sathiavelu. Endophytic Fungi with Antioxidant Activity- A Review. Research Journal of Pharmacy and Technology. 2015: 731-737. doi: 10.5958/0974-360X.2015.00116.X
9. Vasundhara M. Reddy M S. Kumar A. Secondary metabolites from endophytic fungi and their biological activities. New and Future Developments in Microbial Biotechnology and Bioengineering. 2019: 237-258. https://doi.org/10.1016/B978-0-444-63504-4.00018-9
10. Ramadhan MS. Riga R. Hakim EH. Chemical constituents of Aspergillus carbonarius isolated from marine sponge Aaptos suberitoides. Journal of Microbiology, Biotechnology, and Food Sciences. 2023: e9467. https://doi.org/10.55251/jmbfs.9467
11. Amirzakariya BZ. Shakeri A. Bioactive terpenoids derived from plant endophytic fungi: An updated review (2011–2020). Phytochemistry. 2022; 197. https://doi.org/10.1016/j.phytochem.2022.113130
12. Riga R. Happyana, N. Hakim EH. Chemical constituents of Pestalotiopsis microspora HF 12440. Journal of Applied Pharmaceutical Science. 2019; 9(1): 108-124. http://dx.doi.org/10.7324/JAPS.2019.90116
13. Riga R. Happyana N. Hakim EH. Sesquiterpenes produced by Pestalotiopsis microspora HF 12440 isolated from Artocarpus heterophyllus. Natural Product Research. 2021; 34(15): 2229-2231. https://doi.org/10.1080/14786419.2019.1578764
14. Sadahiro Y. Kato H. Williams RM. Tsukamoto S. Irpexine, an isoindolinone alkaloid produced by coculture of endophytic fungi, Irpex lacteus and Phaeosphaeria oryzae. Journal of Natural Products. 2020; 83(5): 1368-1373. https://doi.org/10.1021/acs.jnatprod.0c00047
15. Iwari RK. Pandey R. Shukla SS. Tiwari P. Shah H. Antibacterial Activity of Aerial Part of Andrographis paniculata. Research Journal of Pharmacognosy and Phytochemistry. 2014; 6(3): 122-125. https://rjpponline.org/AbstractView.aspx?PID=2014-6-3-5
16. Hossain M. Urbi Z. Karuniawati H. Mohiuddin RB, Qrimida AM. Alzrag AMM. Ming LC. Pagano E. Capasso R. Andrographis paniculata (Burm. f.) wall. ex nees: An updated review of phytochemistry, antimicrobial pharmacology, and clinical safety and efficacy. Life. 2021; 11(4): 348. https://doi.org/10.3390/life11040348
17. Sahu M. Rao SP. Review Literature: Andrographis paniculata. Research Journal of Pharmacognosy and Phytochemistry. 2018; 10(4): 166-170. doi: 10.5958/2321-5836.2018.00031.9
18. Chauhan ES. Sharma K. Bist R. Andrographis paniculata: A Review of its Phytochemistry and Pharmacological Activities. Research Journal of Pharmacognosy and Phytochemistry. 2019; 12(2): 891-900. doi: 10.5958/0974-360X.2019.00153.7
19. Singh CE. Kriti S. Renu B. Andrographis paniculata: A review of its phytochemistry and pharmacological activities. Research Journal of Pharmacy and Technology. 2019; 12(2): 891-900. http://dx.doi.org/10.5958/0974-360X.2019.00153.7
20. Suryelita S. Riga R. Etika SB. Ikhsan MH. Febria F. Yolanda M. Ulfah M. Artasasta MA. Phytochemical screening and biological activities of fungal Phyllosticta capitalensis derived from Andrographis paniculata. Moroccan Journal of Chemistry. 2023; 11(2): 553-565. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.33657
21. Khairi VAA. Etika SB. Suryelita S. Ulfah M. Riga R. Study of the antibacterial activity of endophytic fungus that colonize with the twig of Andrographis paniculata. Eksakta: Berkala Ilmiah Bidang MIPA. 2021; 22(2): 137-144. https://doi.org/10.24036/eksakta/vol22-iss2/266
22. Suryelita, S. Riga R. Etika SB. Ulfah M. Artasasta MA. Antibacterial screening of endophytic fungus Xylaria sp. derived from Andrographis paniculata (Sambiloto). Open Acces Macedonian Journal of Medicinal Sciences. 2021; 9: 971–975. https://doi.org/10.3889/oamjms.2021.7475
23. Anwar R. Pratama GN. Supratman U. Harneti D. Azhari A. Fajriah S. Azmi MN. Shiono Y. Steroids from Toona sureni-derived endophytic fungi Stemphylium sp. MAFF 241962 and their heme polymerization inhibition activity. Natural and Life Sciences Communications. 2021; 22(3): 1-29. https://doi.org/10.12982/NLSC.2023.055
24. Martinez M. Alvarez ST. Campi MG. Bravo JA. Vila JL. Ergosterol from the mushroom Laetiporus sp.; Isolation and structural characterization. Bolvian Journal of Chemistry. 2015; 32(4): 90-94. http://www.bolivianchemistryjournal.org/QUIMICA%202015D/4_Ergosterol_from_Laetiporus_sp.pdf
25. Choon RLT. Sariah M. Mariam MNS. Ergosterol from the soilborne fungus Ganoderma boninense. Journal of Basic Microbiology. 2011; 52(5): 608-612. https://doi.org/10.1002/jobm.201100308
26. Al-Rabia MW. Mohamed GA. Ibrahim SRM. Asfour HZ. Anti-inflammatory ergosterol derivatives from the endophytic fungus Fusarium chlamydosporum. Natural Product Research. 2021; 35: 5011-5020. https://doi.org/10.1080/14786419.2020.1762185
27. Kitchawalit S. Kanokmedhakul K. Kanokmedhakkul S. Soytong, K. A new benzyl ester and ergosterol derivatives from the fungus Gymnoascus reessii. Natural Product Research. 2014; 28: 1045-1051. https://doi.org/10.1080/14786419.2014.903478
28. Nowak R. Drozd M. Mendyk E. Lemieszek M. Krakowiak O. A new method for the isolation of ergosterol and peroxyergosterol as active compounds of Hygrophoropsis aurantiaca and in vitro antiproliferative activity of isolated ergosterol peroxide. Molecules. 2016; 21(7): 946. https://doi.org/10.3390/molecules21070946
29. Sari AP. Nurlelasari. Azhari A. Harneti D. Maharani R. Mayanti T. Farabi K. Darwati. Supratman U. Fajriah S. Azmi MN. Shiono Y. New ergostane-type sterol produced by an endophytic fungus Fusarium phaseoli isolated from Chisocheton macrophyllus (Meliaceae). Records of Natural Products. 2022; 16(6): 614-621. http://doi.org/10.25135/rnp.334.2203.2387
30. Singh G. Kumar A. Verma MK. Gupta P. Katoch M. Secondary metabolites produced by Macrophomina phaseolina, a fungal root endophyte of Brugmansia aurea, using classical and epigenetic manipulation approach. Folia Microbiologica. 2022; 67: 793-799. https://doi.org/10.1007/s12223-022-00976-3
31. Sasaki H. Kurakado S. Matsumoto Y. Yoshino Y. Sugita T. Koyama K. Kinoshita K. Enniatins from a marine-derived fungus Fusarium sp. inhibit biofilm formation by the pathogenic fungus Candida albicans. Journal of Natural Medicines. 2023; 77: 455-463. https://doi.org/10.1007/s11418-023-01684-z
32. Bu M. Li H. Wang H. Wang J. Lin Y. Ma Y. Synthesis of ergosterol peroxide conjugates as mitochondria targeting probes for enhanced anticancer activity. Molecules. 2019; 24(18): 3307. https://doi.org/10.3390/molecules24183307
33. Jia M. Zhao R. Xu B. Yan W. Chu F. Gu H. Xie T. Xiang H. Ren J. Chen D. Wang P. Lei H. Synthesis and biological activity evaluation of novel peroxo-bridged derivatives as potential anti-hepatitis B virus agents. MedChemCom. 2015; 8: 148-151. https://doi.org/10.1039/C6MD00344C