Author(s):
Herdiana Verliani, Teni Ernawati, Marsah Rahmawati Utami
Email(s):
verlianih@gmail.com
DOI:
10.52711/0974-360X.2024.00567
Address:
Herdiana Verliani1*, Teni Ernawati2, Marsah Rahmawati Utami3
1,3Pharmacy Study Program, Faculty of Health Sciences, Singaperbangsa Karawang University, West Java, 41361, Indonesia.
2Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency of Indonesia (BRIN), 15314, Indonesia.
*Corresponding Author
Published In:
Volume - 17,
Issue - 8,
Year - 2024
ABSTRACT:
Several derivatives of cinnamic acid modified with amino acid groups were investigated by molecular docking simulation in this research. Tests were conducted on the inhibition of bacteria that have resistance to antibiotics Acinetobacter baumanni (PDB ID: 4Y0A) and Methicillin-resistant Staphylococcus aureus (MRSA) (PDB ID: 4CJN). Molecular docking using Auto Dock 4.2, Auto Dock Tools 1.5 programs, and Lipinski's Rule of Five were applied to the test compounds. Twenty compound designs were created using Chemdraw19.1, and docking results were visualized using Biova Discovery Studio. The results of docking molecules to A. baumannii showed that cinnamoyl glutamine and cinnamoyl threonine were shown to have the highest inhibitory activity (?G -8.68 kcal/mol and ?G -8.41 kcal/mol), respectively, in comparison to the native ligand (?G -7.40 kcal/mol) and control imipenem (?G -4.82 kcal/mol). Then, the docking results against MRSA showed the highest inhibitory activity obtained on cinnamoyl lysine and cinnamoyl arginine with binding energy values (?G -7.52 kcal/mol) and (?G -7.17kcal/mol) compared to native ligands (?G -5.09 kcal/mol) and control amoxicillin (?G -7.13 kcal/mol). All compounds fully comply with Lipinski's Rule of Five except cinnamoyl arginine. Through the in-silico model approach, bioactive compounds resulting from cinnamic acid modification with amino acids are predicted to have potential activity against bacterial resistance in MRSA and A.baumannii. This study suggests that cinnamic acid might still have a curative effect, but with a completely different pathway and mechanism compared to its derivatives as hybrids with amino acid groups.
Cite this article:
Herdiana Verliani, Teni Ernawati, Marsah Rahmawati Utami. Study Molecular Docking of Cinnamoyl-Amino Acids as Inhibitors Bacterial Resistance Antibiotics Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus (MRSA). Research Journal of Pharmacy and Technology. 2024; 17(8):3633-1. doi: 10.52711/0974-360X.2024.00567
Cite(Electronic):
Herdiana Verliani, Teni Ernawati, Marsah Rahmawati Utami. Study Molecular Docking of Cinnamoyl-Amino Acids as Inhibitors Bacterial Resistance Antibiotics Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus (MRSA). Research Journal of Pharmacy and Technology. 2024; 17(8):3633-1. doi: 10.52711/0974-360X.2024.00567 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-8-15
REFERENCES:
1. Pinto Ferreira J, Battaglia D, Dorado García A, et al. Achieving Antimicrobial Stewardship on the Global Scale: Challenges and Opportunities. Microorganisms. 2022; 10(8): 1-16. doi:10.3390/microorganisms10081599
2. O’Neill J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.; 2014.
3. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022; 399(10325): 629-655. doi:10.1016/S0140-6736(21)02724-0
4. Edwards F, MacGowan A, Macnaughton E. Antibiotic Resistance. Vol 49. Elsevier Ltd; 2021. doi:10.1016/j.mpmed.2021.07.006
5. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020; 10(107): 1-11. doi:10.3389/fcimb.2020.00107
6. Weber BS, Kinsella RL, Harding CM, Feldman MF. The Secrets of Acinetobacter Secretion. Trends Microbiol. 2017; 25(7): 532-545. doi:10.1016/j.tim.2017.01.005
7. Malhotra I, Desoky H, Seneviratne C, et al. Acinetobacter Baumanii Pneumonia in a Nonintubated Patient Who Presented With Flu-Like Symptoms. Chest. 2016; 150(4). doi:10.1016/j.chest.2016.08.138
8. Lei J, Han S, Wu W, Wang X, Xu J, Han L. Extensively drug-resistant Acinetobacter baumannii outbreak cross-transmitted in an intensive care unit and respiratory intensive care unit. Am J Infect Control. 2016; 44(11): 1280-1284. doi:10.1016/j.ajic.2016.03.041
9. Alrahmany D, Omar AF, Alreesi A, Harb G, Ghazi IM. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics. 2022; 11(8). doi:10.3390/antibiotics11081086
10. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection. 2012; 18(3): 268-281. doi:10.1111/j.1469-0691.2011.03570.x
11. Zadeh Hosseingholi E, Rasooli I, Latif Mousavi Gargari S, Zadeh Hosseingholi Á Rasooli EI, L Mousavi Gargari ÁS, Rasooli I. In Silico Analysis of Acinetobacter baumannii Phospholipase D as a Subunit Vaccine Candidate. Actha Biotheoretica. 2014; 62(4): 455-478. doi:10.1007/s10441-014-9226
12. Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis. 2008; 8(12): 751-762. doi:10.1016/S1473-3099(08)70279-2
13. Nakaminami H, Takadama S, Okita M, Sasaki M, Noguchi N. Fast-acting bactericidal activity of olanexidine gluconate against qaca/B-positive methicillin-resistant Staphylococcus aureus. J Med Microbiol. 2019; 68(6): 957-960. doi:10.1099/jmm.0.000979
14. Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr. 2019; 7(2): 1-23. doi:10.1128/microbiolspec.gpp3-0057-2018
15. Ruwizhi N, Aderibigbe BA. Cinnamic acid derivatives and their biological efficacy. Int J Mol Sci. 2020; 21(16): 1-36. doi:10.3390/ijms21165712
16. Cai R, Miao M, Yue T, et al. Antibacterial activity and mechanism of cinnamic acid and chlorogenic acid against Alicyclobacillus acidoterrestris vegetative cells in apple juice. Int J Food Sci Technol. 2019; 54(5): 1697-1705. doi:10.1111/ijfs.14051
17. Sova M. Antioxidant and Antimicrobial Activities of Cinnamic Acid Derivatives. Reviews in Medicinal Chemistry. 2012; 12: 749-767.
18. Zhou K, Chen D, Li B, Zhang B, Miao F, Zhou L. Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. PLoS One. 2017; 12(4). doi:10.1371/journal.pone.0176189
19. Zanetti M, Ternus Z, Dalcanton F, et al. Microbiological Characterization of Pure Geraniol and Comparison with Bactericidal Activity of the Cinnamic Acid in Gram-Positive and Gram-Negative Bacteria. J MicrobBiochem Technol. 2015; 7(4): 186-193. doi:10.4172/1948-5948.1000203
20. Wang R, Yang W, Fan Y, et al. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg Chem. 2019; 88. doi:10.1016/j.bioorg.2019.102951
21. Guzman JD. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014; 19(12): 19292-19349. doi:10.3390/molecules191219292
22. Amaliyah N, Ngadiwiyana, Sarjono PR, Ismiyarto. Antibacterial Activity of Cinnamic Acid - Chitosan Encapsulation. Jurnal Kimia Sains dan Aplikasi. 2018;21(1):8-12.
23. Malheiro JF, Maillard JY, Borges F, Simões M. Evaluation of cinnamaldehyde and cinnamic acid derivatives in microbial growth control. Int Biodeterior Biodegradation. 2019; 141: 71-78. doi:10.1016/j.ibiod.2018.06.003
24. Malathy D. Cytotoxic and Antimicrobial Activities of Piperazine Bridged dithiocarbamate Homo Binuclear Mixed Ligand Complexes of Cu(II) with Amino acids. Res J Pharm Technol. 2018; 11(8): 3589-3598. doi:https://doi.org/10.5958/0974-360X.2018.00661.3
25. Komisarenko MА, Polischuk IM, Upyr T V, Saidov NB. Study of Amino Acid Composition and Immunomodulatory Activity of Rubus idaeus Alcoholic Extract. Res J Pharm Technol. 2021; 14(3): 1329-1332. doi:https://doi.org/10.5958/0974-360X.2021.00236.5
26. Redhwan MAM, Deka G, Varghese MM. Synthesis and molecular docking studies of some new pyrazoline derivatives for antimicrobial properties. Res J Pharm Technol. 2020; 13(10): 4629. doi:10.5958/0974-360x.2020.00815.x
27. Jayalakshmi DS, Hemanand D. Homology modeling of myoglobin for green sea turtle: A computational approach. Res J Pharm Technol. 2016; 9(9): 1461-1464. doi:https://doi.org/10.5958/0974-360X.2016.00283.3
28. Ramjith US, Muhammed S. Molecular Docking Study of Novel Imidazo[2,1-b]-1,3,4 thiadiazole derivatives. Res J Pharm Technol. 2013; 6(6): 688-694.
29. Malik A, Malik N, Dhiman P, Khatkar A, Kakkar S. Molecular docking, synthesis, α-amylase inhibition, urease inhibition and antioxidant evaluation of 4-hydroxy-3-methoxy benzoic acid derivatives. Res J Pharm Technol. 2019; 12(12): 5653-5663. doi:https://doi.org/10.5958/0974-360X.2019.00978.8
30. Hongmao S. In Silico ADMET Profiling. Elsevier; 2016. doi:10.1016/b978-0-08-100098-4.00007-7
31. Myatt GJ, Ahlberg E, Akahori Y, et al. In silico toxicology protocols. Regulatory Toxicology and Pharmacology. 2018; 96: 1-17. doi:10.1016/j.yrtph.2018.04.014
32. Nursamsiar N, M. Mangande M, Awaluddin A, Nur S, Asnawi A. In Silico Study of Aglycon Curculigoside A and Its Derivatives as α-Amilase Inhibitors. Indonesian Journal of Pharmaceutical Science and Technology. 2020; 7(1): 29. doi:10.24198/ijpst.v7i1.23062
33. Bhaskar V, Namboori K, Pappachen LK. In Silico Discovery of Novel Ligands for Anti-Tubercular Targets using Computer Aided Drug Design. Res J Pharm Technol. 2019; 12(11): 5646-5650. doi:10.5958/0974-360X.2019.00977.6
34. Chinchole P, Wankhede S. Comparative In Silico drug likeness and In vitro study of some Schiff’s bases as potent COX II Inhibitors. Res J Pharm Technol. 2019; 12(10): 4973-4980. doi:https://doi.org/10.5958/0974-360X.2019.00862.X
35. Lipinski CA. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev. 2016; 101: 34-41. doi:10.1016/j.addr.2016.04.029
36. Paterson DA, Conradi RA, Hilgers AR, Vidmar TJ, Burton PS. A Non-aqueous Partitioning System for Predicting the Oral Absorption Potential of Peptides. QSAR Comb Sci. 1994; 13(1): 4-10. doi:10.1002/qsar.19940130103
37. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings. Adv Drug Deliv Rev. 2001;46:3-26.
38. Susmi MS, Kumar RS, Sreelakshmi V, et al. A computational approach for identification of phytochemicals for targeting and optimizing the inhibitors of heat shock proteins. Res J Pharm Technol. 2015; 8(9): 1199-1204. doi:10.5958/0974-360X.2015.00219.X
39. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015; 20(7): 13384-13421. doi:10.3390/molecules200713384
40. Kontoyianni M, McClellan LM, Sokol GS. Evaluation of Docking Performance: Comparative Data on Docking Algorithms. J Med Chem. 2004; 47(3): 558-565. doi:10.1021/jm0302997
41. Nadri MH, Mohd W, Hakimi N, Salleh W. Molecular Docking Studies of Phytochemicals from Piper Species as Potential Dual Inhibitor of Group X Secreted Phospholipase A2 (SPLA 2-X) and Cyclooxygenase-2 (COX-2). Res J Pharm Technol. 2020; 13(5): 2181-2186. doi:https://doi.org/10.5958/0974-360X.2020.00392.3
42. Syahputra G, Ambarsari L, Sumaryada T. Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin dan Analognyasebagai Inhibitor Enzim 12-Lipoksigenase. Jurnal Biofisika. 2014; 10(1): 55-67.
43. Alam F, Kumar Kharya A, Juber A, Irfan Khan M. Naringin: Sources, Chemistry, Toxicity, Pharmacokinetics, Pharmacological Evidences, Molecular Docking and Cell line Study. Res J Pharm Technol. 2020; 13(5): 2507-2515. doi:https://doi.org/10.5958/0974-360X.2020.00447.3
44. Kroemer RT. Molecular modelling probes: docking and scoring. Biochem Soc Trans. 2003; 31(5): 980-984. doi:10.1042/bst0310980
45. Kartasasmita E. Quercetin Derivatives Docking Based On Study Of Flavonoids Interaction To Cyclooxygenase-2. Indonesian Journal Chemistry. 2009; 9(2): 297-302.
46. Cosconati S, Forli S, Perryman AL, Harris R, Goodsell DS, Olson AJ. Virtual screening with AutoDock: Theory and practice. Expert Opin Drug Discov. 2010; 5(6): 597-607. doi:10.1517/17460441.2010.484460
47. Schottel BL, Chifotides HT, Dunbar KR. Anion-Π interactions. Chem Soc Rev. 2008; 37(1): 68-83. doi:10.1039/b614208g
48. Schwans JP, Sunden F, Lassila JK, Gonzalez A, Tsai Y, Herschlag D. Use of anion-aromatic interactions to position the general base in the ketosteroid isomerase active site. Proc Natl Acad Sci U S A. 2013; 110(28): 11308-11313. doi:10.1073/pnas.1206710110
49. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J. Putting anion-π interactions into perspective. Angewandte Chemie- International Edition. 2011; 50(41): 9564-9583. doi:10.1002/anie.201100208
50. Kurczab R, Śliwa P, Rataj K, Kafel R, Bojarski AJ. Salt Bridge in Ligand-Protein Complexes - Systematic Theoretical and Statistical Investigations. J Chem Inf Model. 2018; 58(11): 2224-2238. doi:10.1021/acs.jcim.8b00266