Author(s): Reza A. Fessi, Coen P. Danudiningrat, Anita Yuliati, Prasiddha M.E. Fadhlallah

Email(s): reza.al.fessi@fkg.unair.ac.id , coen-p-d@fkg.unair.ac.id , anita-y@fkg.unair.ac.id , prasiddha.mahardhika.el-2018@fkg.unair.ac.id

DOI: 10.52711/0974-360X.2024.00465   

Address: Reza A. Fessi1, Coen P. Danudiningrat2*, Anita Yuliati3, Prasiddha M.E. Fadhlallah4
1Post Graduate Doctoral Program, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia/Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132.
2Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia/Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132.
3Department of Dental Material, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia/Jl. Mayjen Prof. Dr.Moestopo No.47, Surabaya, East Java, Indonesia, 60132.
4Residency Program of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia/Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, East Java, Indonesia, 60132.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
As a practical and safe substitute for autologous transplants, xenografts and alloplastic bone substitutes are available. Numerous research projects conducted at numerous research centers in various parts of the world have investigated the efficacy of these products.The purpose of the investigation is to determine whether bovine bone blocks are efficient as regenerative bone replacement treatments, specifically whether they are effective in both in vivo and in vitro tests as bone substitutes. A total of 235 publications were found through an electronic search of the Pubmed, Scopus, Science Direct, and Google Scholar databases. Evaluation of complications at the implant site is low (n=13) with only one study showing 8.9% implant failure, 30% unhealthy implant (n=4) and a complication rate of 12.5% with the most common complications being dehiscence, bruising and oedema (n=3). The most commonly used parameter in most studies was vertical bone gain (n=26), with a mean VBG of 4.5mm and new bone formation (n=11), with a mean NFB of 14.5%, indicating adequate integration between graft and host bone. The resorption rate (n=6) was found to be 22% on average or approximately 2.7mm over a 4 month to 3 year observation period. Bovine blocks can serve as a useful bone graft substitute in regenerative surgery and are improved by the addition of BMP-2, PDGF and collagen membrane.


Cite this article:
Reza A. Fessi, Coen P. Danudiningrat, Anita Yuliati, Prasiddha M.E. Fadhlallah. A Scoping Review on The effectiveness of Bone Regeration Procedures using Bovine Bone Block Grafts: A Summary of 20 Years of Research Experience. Research Journal of Pharmacy and Technology. 2024; 17(6):2975-4. doi: 10.52711/0974-360X.2024.00465

Cite(Electronic):
Reza A. Fessi, Coen P. Danudiningrat, Anita Yuliati, Prasiddha M.E. Fadhlallah. A Scoping Review on The effectiveness of Bone Regeration Procedures using Bovine Bone Block Grafts: A Summary of 20 Years of Research Experience. Research Journal of Pharmacy and Technology. 2024; 17(6):2975-4. doi: 10.52711/0974-360X.2024.00465   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-84


REFERENCES:
1.    Chim H, Salgado CJ, Mardini S, Chen HC. Reconstruction of mandibular defects. Semin Plast Surg. 2010; May; 24(2): 188-97. doi: 10.1055/s-0030-1255336.
2.    Sudarmono, Widyaputra S, Sitam S, Suherna I, Fitri AD, Rachman A. Comparison of Bone regeneration in hADMSC Versus hUCBMSC with hBMMSC as a Reference: A Literature Review of Potential Bone Regeneration. Research Journal of Pharmacy and Technology. 2021; 14(4): 1993-8.
3.    Kamel R, El-Wakil NA, Elkasabgy NA. Injectable hydrogel scaffolds composed of Nanocellulose derived from sugarcane bagasse and combined with calcium for Bone regeneration. Research Journal of Pharmacy and Technology. 2023; 16(7): 3439-0.
4.    Ganta GK, Alla RK, Cheruvu K, Guduri BR. Bone Grafts: An Overview of Bone Remodeling, Types and Recent Advances. Research Journal of Pharmacy and Technology. 2021; 14(11): 6101-5.
5.    Prahasanti C, Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Research Journal of Pharmacy and Technology. 2022; 15(4): 1737-2.
6.    Kribaa OK, Zenkhri L, Boutarfaia A, Benamour L, Chahbaoui N. Elaboration and Physicochemical characterization of a Biomaterial for Bone Substitution. Asian Journal of Research in Chemistry. 2022; 15(1): 71-6.
7.    Oryan A, Monazzah-Harsini S. Characteristics of the Main Constituents Used in Bone Tissue Engineering. EC Orthopaedics. 2018; 9(3): 105-114.
8.    Chavda S, Levin L. Human Studies of Vertical and Horizontal Alveolar Ridge Augmentation Comparing Different Types of Bone Graft Materials: A Systematic Review. J Oral Implantol. 2018; Feb; 44(1): 74-84. doi: 10.1563/aaid-joi-D-17-00053.
9.    Ramanauskaite A, Roccuzzo A, Schwarz F. A systematic review on the influence of the horizontal distance between two adjacent implants inserted in the anterior maxilla on the inter-implant mucosa fill. Clin Oral Implants Res. 2018; Mar; 29 Suppl 15: 62-70. doi: 10.1111/clr.13103.
10.    Scarano A, Lorusso F, Santos de Oliveira P, Kunjalukkal Padmanabhan S, Licciulli A. Hydroxyapatite Block Produced by Sponge Replica Method: Mechanical, Clinical and Histologic Observations. Materials (Basel). 2019; Sep. 21; 12(19): 3079. doi: 10.3390/ma12193079.
11.    Al-Moraissi EA, Alkhutari AS, Abotaleb B, Altairi NH, Del Fabbro M. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int J Oral Maxillofac Surg. 2020; Jan; 49(1): 107-120. doi: 10.1016/j.ijom.2019.05.004.
12.    Chin VK, Shinagawa A, Naclério-HomemMda G. Bone healing of mandibular critical-size defects in spontaneously hypertensive rats. Braz Oral Res. 2013; Sep-Oct; 27(5): 423-30. doi: 10.1590/S1806-83242013000500006.
13.    Scarano A, Assenza B, DI Cerbo A, Candotto V, Santos DE Oliveira P, Lorusso F. Bone regeneration in aesthetic areas using titanium micromesh. Three case reports. Oral Implantol (Rome). 2017; Jan 21; 10(4): 488-494. doi: 10.11138/orl/2017.10.4.488.
14.    Gehrke SA, Mazón P, Del Fabbro M, Tumedei M, Aramburú Júnior J, Pérez-Díaz L, De Aza PN. Histological and Histomorphometric Analyses of Two Bovine Bone Blocks Implanted in Rabbit Calvaria. Symmetry. 2019; 11(5): 641. https://doi.org/10.3390/sym11050641
15.    Testori T, Wallace SS, Trisi P, Capelli M, Zuffetti F, Del Fabbro M. Effect of xenograft (ABBM) particle size on vital bone formation following maxillary sinus augmentation: a multicenter, randomized, controlled, clinical histomorphometric trial. Int J Periodontics Restorative Dent. 2013; 33(4): 467-475. doi:10.11607/prd.1423.
16.    van de Vijfeijken SECM, Münker TJAG, Spijker R, et al. Autologous Bone Is Inferior to Alloplastic Cranioplasties: Safety of Autograft and Allograft Materials for Cranioplasties, a Systematic Review. World Neurosurg. 2018; 117: 443-452. e8. doi:10.1016/j.wneu.2018.05.193.
17.    Tumedei M, Savadori P, Del Fabbro M. Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J. Mol Sci. 2019; 20(17): 4221. Published 2019; Aug 28. doi:10.3390/ijms20174221.
18.    Bano N, Jikan SS, Basri H, Adzila S. XRD and FTIR study of A&B type carbonated hydroxyapatite extracted from bovine bone. February 2019, AIP Conference Proceedings. 2019; 2068(1): 020100. doi: https://doi.org/10.1063/1.5089399.
19.    Bruma, A. (Ed.). Scanning Transmission Electron Microscopy: Advanced Characterization Methods for Materials Science Applications (1st ed.). CRC Press. 2020; https://doi.org/10.1201/9780429243011
20.    Page M J, McKenzieJ E, BossuytP M, BoutronI, HoffmannT C, MulrowC D et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021; 372: n71.
21.    Khurshid Z, Tariq R, Asiri FY, Abid K, Zafar MS. Literature searchstrategies in dental education and research. J. Taibah Univ Med Sci. 2021; 16(6): 799–806
22.    Rombouts C, Jeanneau C, Camilleri J, Laurent P, About I. Characterization and angiogenic potential of xenogeneic bone grafting materials: Role of periodontal ligament cells. Dent Mater J. 2016; 35(6): 900-907. doi:10.4012/dmj.2016-005
23.    Giuliani A, Iezzi G, Mazzoni S, Piattelli A, Perrotti V, Barone A. Regenerative properties of collagenated porcine bone grafts in human maxilla: demonstrative study of the kinetics by synchrotron radiation microtomography and light microscopy [published correction appears in Clin Oral Investig. 2022 May; 26(5): 4241]. Clin Oral Investig. 2018; 22(1): 505-513. doi:10.1007/s00784-017-2139-6.
24.    Jeanneau C, Le Fournis C, About I. Xenogeneic bone filling materials modulate mesenchymal stem cell recruitment: role of the Complement C5a. Clin Oral Investig. 2020; 24(7): 2321-2329. doi:10.1007/s00784-019-03087-5.
25.    Felice P, Barausse C, Barone A, Zucchelli G, Piattelli M, Pistilli R, et al. Interpositional Augmentation Technique in the Treatment of Posterior Mandibular Atrophies: A Retrospective Study Comparing 129 Autogenous and Heterologous Bone Blocks with 2 to 7 Years Follow-Up. Int J Periodontics Restorative Dent. 2017; Jul/Aug; 37(4): 469-480. doi: 10.11607/prd.2999.
26.    Li J, Xuan F, Choi BH, Jeong SM. Minimally invasive ridge augmentation using xenogenous bone blocks in an atrophied posterior mandible: a clinical and histological study. Implant Dent. 2013; 22(2): 112-116. doi:10.1097/ID.0b013e3182805bec.
27.    Mirković S, Budak I, Puskar T, Tadic A, Sokac M, et al. Application of modern computer-aided technologies in the production of individual bone graft: A case report. Vojnosanitetski Pregled 2015; 72(12): 1126–1131. doi:10.2298/VSP140915117M.
28.    Ortiz-Vigón A, Suarez I, Martínez-Villa S, Sanz-Martín I, Bollain J, Sanz M. Safety and performance of a novel collagenated xenogeneic bone block for lateral alveolar crest augmentation for staged implant placement. Clin Oral Implants Res. 2018; 29(1): 36-45. doi:10.1111/clr.13036
29.    Chen YW, Chen MY, Hsieh DJ, Periasamy S, Yen KC, Chuang CT, et al. Evaluating the bone-regenerative role of the decellularized porcine bone xenograft in a canine extraction socket model. Clin Exp Dent Res. 2021; 7(4): 409-418. doi:10.1002/cre2.361
30.    Felice P, Piana L, Checchi L, Corvino V, Nannmark U, Piattelli M. Vertical ridge augmentation of an atrophic posterior mandible with an inlay technique and cancellous equine bone block: a case report. Int J Periodontics Restorative Dent. 2013; 33(2): 159-166. doi:10.11607/prd.1098.
31.    Simion M, Rocchietta I, Dellavia C. Three-dimensional ridge augmentation with xenograft and recombinant human platelet-derived growth factor-BB in humans: report of two cases. Int J Periodontics Restorative Dent. 2007; Apr; 27(2): 109-15. PMID: 17514882.
32.    Antunes AA, Grossi-Oliveira GA, Martins-Neto EC, Almeida AL, Salata LA. Treatment of circumferential defects with osseoconductive xenografts of different porosities: a histological, histometric, resonance frequency analysis, and micro-CT study in dogs. Clin Implant Dent Relat Res. 2015; 17 Suppl 1:e202-e220. doi:10.1111/cid.12181
33.    Borgia GS, Pebe P, Barbot R, Haas AN. Immediate implants with buccal defects filled with bone from the tuberosity or a xenograft: 1-year randomized trial.Brazilian Oral Research 2022; 36: 1–13.  doi: 10.1590/1807-3107BOR-2022.VOL36.0102.
34.    Cardaropoli D. Vertical ridge augmentation with the use of recombinant human platelet-derived growth factor-BB and bovine bone mineral: a case report. Int J Periodontics Restorative Dent. 2009; Jun; 29(3): 289-95. PMID: 19537468.
35.    Schwarz F, Ferrari D, Balic E, Buser D, Becker J, Sager M. Lateral ridge augmentation using equine- and bovine-derived cancellous bone blocks: a feasibility study in dogs. Clin Oral Implants Res. 2010; 21(9): 904-912. doi:10.1111/j.1600-0501.2010.01951.x
36.    Bashara H, Wohlfahrt JC, Polyzois I, Lyngstadaas SP, Renvert S, Claffey N. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog. Clin Oral Implants Res. 2012; 23(8): 911-917. doi:10.1111/j.1600-0501.2011.02240.x
37.    Alayan J, Ivanovski S. A prospective controlled trial comparing xenograft/autogenous bone and collagen-stabilized xenograft for maxillary sinus augmentation-Complications, patient-reported outcomes and volumetric analysis. Clin Oral Implants Res. 2018; 29(2): 248-262. doi:10.1111/clr.13107.
38.    Zang S, Zhu L, Luo K, Mu R, Chen F, Wei X, et al. Chitosan composite scaffold combined with bone marrow-derived mesenchymal stem cells for bone regeneration: in vitro and in vivo evaluation. Oncotarget. 2017; 8(67): 110890-110903. Published 2017 Dec 5. doi:10.18632/oncotarget.22917
39.    Felice P, Marchetti C, Iezzi G, Piattelli A, Worthington H, Pellegrino G, et al. Vertical ridge augmentation of the atrophic posterior mandible with interpositional bloc grafts: bone from the iliac crest vs. bovine anorganic bone. Clinical and histological results up to one year after loading from a randomized-controlled clinical trial. Clin Oral Implants Res. 2009; 20(12): 1386-1393. doi:10.1111/j.1600-0501.2009.01765.x
40.    Lee EA. Subperiosteal Minimally Invasive Aesthetic Ridge Augmentation Technique (SMART): A New Standard for Bone Reconstruction of the Jaws. Int J Periodontics Restorative Dent. 2017; 37(2): 165-173. doi:10.11607/prd.3171
41.    Victor, P.. Augmentation procedures with recombinant Human recombinant platelet-derived growth factor BB For the horizontal and vertical jaw reconstruction. Chirugie OMF. 2011; 19–23. https://ibn.idsi.md/sites/default/files/imag_file/7.Augmentation procedures with recombinant.pdf.
42.    Talebi M, Janbakhsh N. Combined use of xenogenous bone blocks and guided bone regeneration for three-dimensional augmentation of anterior maxillary ridge: A case series. J Adv Periodontol Implant Dent. 2019; 11(2): 94-98. doi:10.15171/japid.2019.015.
43.    Nevins ML, Camelo M, Nevins M, Schupbach P, Friedland B, Camelo JM, et al. Minimally invasive alveolar ridge augmentation procedure (tunneling technique) using rhPDGF-BB in combination with three matrices: a case series. Int J Periodontics Restorative Dent. 2009; Aug; 29(4): 371-83.
44.    Naruse K, Fukuda M, Hasegawa H, Yagami K, Udagawa N. Advanced alveolar bone resorption treated with implants, guided bone regeneration, and synthetic grafting: a case report. Implant Dent. 2010; 19(6): 460-467. doi:10.1097/ID.0b013e3181fce1a9.
45.    Barbu HM, Iancu SA, Rapani A, Stacchi C. Guided Bone Regeneration with Concentrated Growth Factor Enriched Bone Graft Matrix (Sticky Bone) vs. Bone-Shell Technique in Horizontal Ridge Augmentation: A Retrospective Study. J Clin Med. 2021; 10(17): 3953. doi:10.3390/jcm10173953.
46.    Cristalli MP, La Monaca G, Pranno N, Annibali S, Iezzi G, Vozza I. Xeno-Hybrid Composite Scaffold Manufactured with CAD/CAM Technology for Horizontal Bone-Augmentation in Edentulous Atrophic Maxilla: A Short Communication. Applied Sciences. 2020; 10(8): 2659. https://doi.org/10.3390/app10082659
47.    Messo E, Grottoli CF, Perale G, Hirsch J-M. Custom-Made Horizontal and Vertical Maxillary Augmentation with Smartbone® On Demand™: A Seven-Year Follow-Up Case. Applied Sciences. 2020; 10(22): 8039. https://doi.org/10.3390/app10228039.
48.    Teng F, Wei L, Yu D, Deng L, Zheng Y, Lin H, et al. Vertical bone augmentation with simultaneous implantation using deproteinized bovine bone block functionalized with a slow delivery of BMP-2. Clin Oral Implants Res. 2020; 31(3): 215-228. doi:10.1111/clr.13558.
49.    Thoma DS, Bienz SP, Payer M, et al. Randomized clinical study using xenograft blocks loaded with bone morphogenetic protein-2 or autogenous bone blocks for ridge augmentation - A three-dimensional analysis. Clin Oral Implants Res. 2019; 30(9): 872-881. doi:10.1111/clr.13492.
50.    Bienz SP, Payer M, Hjerppe J, Hüsler J, Jakse N, Schmidlin PR, et al. Primary bone augmentation leads to equally stable marginal tissue conditions comparing the use of xenograft blocks infused with BMP-2 and autogenous bone blocks: A 3D analysis after 3 years. Clin Oral Implants Res. 2021; 32(12): 1433-1443. doi:10.1111/clr.13843.
51.    Mordenfeld A, Johansson CB, Albrektsson T, Hallman M. A randomized and controlled clinical trial of two different compositions of deproteinized bovine bone and autogenous bone used for lateral ridge augmentation. Clin Oral Implants Res. 2014; 25(3): 310-320. doi:10.1111/clr.12143.
52.    Benic GI, Eisner BM, Jung RE, Basler T, Schneider D, Hämmerle CHF. Hard tissue changes after guided bone regeneration of peri-implant defects comparing block versus particulate bone substitutes: 6-month results of a randomized controlled clinical trial. Clin Oral Implants Res. 2019; 30(10): 1016-1026. doi:10.1111/clr.13515.
53.    Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio-Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013; 24(5): 576-585. doi:10.1111/j.1600-0501.2012.02431.x
54.    Bohner LO, Mukai E, Mukai S, Tortamano P, Sesma N. Bone defect rehabilitation using lyophilized bone preshaped on a stereolithographic model. Contemp Clin Dent. 2016; 7: 398‑400.
55.    Hernández-Alfaro F, Ruiz-Magaz V, Chatakun P, Guijarro-Martínez R. Mandibular reconstruction with tissue engineering in multiple recurrent ameloblastoma. Int J Periodontics Restorative Dent. 2012; 32(3): e82-e86.
56.    Soares MQS, Van Dessel J, Jacobs R, et al. Morphometric evaluation of bone regeneration in segmental mandibular bone defects filled with bovine bone xenografts in a split-mouth rabbit model. Int J Implant Dent. 2019; 5(1): 32. doi:10.1186/s40729-019-0187-1.
57.    Veis A, Dabarakis N, Koutrogiannis C, Barlas I, Petsa E, Romanos G. Evaluation of Vertical Bone Regeneration Using Block and Particulate Forms of Bio-Oss Bone Graft: A Histologic Study in the Rabbit Mandible. J Oral Implantol. 2015; 41(3): e66-e72. doi:10.1563/AAID-JOI-D-13-00241.
58.    Paknejad M, Rokn AR, Yaghobee S, Moradinejad P, Heidari M, Mehrfard A. Effects of two types of anorganic bovine bone on bone regeneration: a histological and histomorphometric study of rabbit calvaria. J Dent (Tehran). 2014; 11(6): 687-695.
59.    Al-Rasheed A, Alahmari F, Ramalingam S, Aldahmash AM, et al. Efficacy of Mesenchymal Stem Cells as Adjunct to Guided Bone Regeneration in Standardized Calvarial Defects in Rats: An In Vivo Microcomputed Tomographic and Histologic Analysis. The International Journal of Periodontics and Restorative Dentistry. 2016; 36: s23–s37. Available at: https://doi.org/10.11607/prd.2319.
60.    Durual S, Schaub L, Mekki M, Manoil D, Martinelli-Kläy CP, Sailer I, et al. Pre-Treat Xenogenic Collagenous Blocks of Bone Substitutes with Saline Facilitate Their Manipulation and Guarantee High Bone Regeneration Rates, Qualitatively and Quantitatively. Biomedicines. 2021; Mar 17; 9(3): 308. doi: 10.3390/biomedicines9030308.
61.    Gehrke SA, Mazón P, Pérez-Díaz L, et al. Study of Two Bovine Bone Blocks (Sintered and Non-Sintered) Used for Bone Grafts: Physico-Chemical Characterization and In Vitro Bioactivity and Cellular Analysis. Materials (Basel). 2019; 12(3): 452. Published 2019 Feb 1. doi:10.3390/ma12030452.
62.    Kamal M, Al-Obaidly S, Lethaus B, Bartella AK. A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies. Clin Exp Dent Res. 2022; 8(6): 1331-1340. doi:10.1002/cre2.644
63.    Nugraha AP, Kamadjaja DB, Sumarta NPM, et al. Osteoinductive and Osteogenic Capacity of Freeze-Dried Bovine Bone Compared to Deproteinized Bovine Bone Mineral Scaffold in Human Umbilical Cord Mesenchymal Stem Cell Culture: An In Vitro Study [published online ahead of print, 2023 Jan 4]. Eur J Dent. 2023;10.1055/s-0042-1758786. doi:10.1055/s-0042-1758786.
64.    Montessory M, Kamadjaja DB, Sumarta NPM, Rizqiawan A, Rahman MZ. Freeze-Dried Bovine Bone as Xenogenic Scaffold: Does Decellularization Lower Its Antigenic Potential? Journal of International Dental and Medical Research 2022; 15(4): 1486-1491.
65.    Moussa NT, Dym H. Maxillofacial Bone Grafting Materials. Dental clinics of North America. 2020; 64(2): 473-90. doi:10.1016/j.cden.2019.12.011.
66.    Moy PK, Aghaloo T. Risk factors in bone augmentation procedures. Periodontol 2000. 2019; 81(1): 76-90. doi:10.1111/prd.12285.
67.    Graziani G, Govoni M, Vivarelli L, Boi M. Application to Bone Grafts and Nanostructured Biomimetic Coating. Coatings 2020; 10(6): 522.
68.    Pereira HF, Cengiz IF, Silva FS. Scaffolds and coatings for bone regeneration. J. Mater Sci: Mater Med 2020; 31: 27. https://doi.org/10.1007/s10856-020-06364-y.
69.    Amid R, Kheiri A, Kheiri L, Kadkhodazadeh M, Ekhlasmandkermani M. Structural and chemical features of xenograft bone substitutes: A systematic review of in vitro studies. Biotechnol Appl Biochem. 2021; 68(6): 1432-1452. doi:10.1002/bab.2065.
70.    Pallesen L, Schou S, Aaboe M, Hjørting-Hansen E, Nattestad A, Melsen F. Influence of particle size of autogenous bone grafts on the early stages of bone regeneration: a histologic and stereologic study in rabbit calvarium. Int. J. Oral Maxillofac Implants. 2002; 17(4): 498-506.
71.    Abood FM, Ghassan A, Abbas HD, Witwit LJ, Hindi NKK, Khmra HKAA, et al. The occurrence of alveolar bone resorption with oral bacterial infection. Research J. Pharm. and Tech. 2017; 10(6): 1997-2000.
72.    Kumar MPS, Devishree. Role of Bone Morphogenic Protein 3 in the regulation of Bone Growth and Development. Research J. Pharm. and Tech. 2018; 11(3): 1251-1254.
73.    Kumar MPS, Priyanka S, \Sanofer A. Structure and Expression Characteristics of Bone Morphogenic Protein 3 in Fracture of Human Jaw Bones. Research J. Pharm. and Tech. 2018; 11(3): 1233-1236.
74.    Kumar MPS, Nandhini T. Mechanism of action of Bone Morphogenic Protein 3 in the maintenance of Tissue Homeostasis. Research J. Pharm. and Tech. 2018; 11(3): 1270-1274.
75.    Strukov VI, Kislov AI, Eremina NV, Deriabina GP, Sergeeva-Kondrachenko MY, et al. The use of Bone Tissue Non-Steroid Anabolizators in Treatment of Osteoporosis. Research J. Pharm. and Tech. 2019; 12(5): 2195-2199.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available