Author(s): M. Gowthami, Rajesh R

Email(s): rajeshr@acharya.ac.in

DOI: 10.52711/0974-360X.2024.00461   

Address: M. Gowthami, Rajesh R*
Department of Pharmaceutical Analysis, Acharya & BM Reddy College of Pharmacy, Soladevanahalli, Hessarghatta Main Road, Bengaluru, Karnataka, India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Tyrosine KIs have become a targeted drug therapy for different malignancies. Over the past ten years, kinase inhibitors, including monoclonal antibodies and small-molecule TKIs targeted at kinases, have become a significant class of chemotherapeutic agents. A number of studies documenting the design, usage and validation of bioanalytical methods for TCKIs have been published as a result of the rising need for bioanalytical approaches to both qualitatively and quantitatively study such compounds. Many biomatrices, including blood, cerebrospinal fluid, urine, tissue, and even liver microsomes, can be used to quantify TCKIs. The majority of papers explain the technological framework of analytical methods that can do this. In recent times, there has also been an increase in interest in the discovery of intermediates and biotransformation mechanisms for novel TCKIs. We give a summary of TCKI bioanalytical techniques.


Cite this article:
M. Gowthami, Rajesh R. An Overview of Analytical and Bioanalytical Techniques for the determination of Tyrosine Kinase Inhibitors. Research Journal of Pharmacy and Technology. 2024; 17(6):2949-4. doi: 10.52711/0974-360X.2024.00461

Cite(Electronic):
M. Gowthami, Rajesh R. An Overview of Analytical and Bioanalytical Techniques for the determination of Tyrosine Kinase Inhibitors. Research Journal of Pharmacy and Technology. 2024; 17(6):2949-4. doi: 10.52711/0974-360X.2024.00461   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-80


REFERENCES:
1.    Eskens FA. Angiogenesis inhibitors in clinical development; where are we now and where are we going?. British Journal of Cancer. 2004; 90(1): 1-7. https://doi.org/10.1038/sj.bjc.6601401
2.    Kannaiyan R. Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Review of Anticancer Therapy. 2018; 18(12): 1249-70. https://doi.org/10.1080/14737140.2018.1527688
3.    Bhullar KS. Lagarón NO. McGowan EM. Parmar I. Jha A. Hubbard BP. Rupasinghe HV. Kinase-targeted cancer therapies: progress, challenges and future directions. Molecular Cancer. 2018; 17: 1-20. https://doi.org/10.1186/s12943-018-0804-2
4.    Du Z. Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer. 2018; 17: 1-3. https://doi.org/10.1186/s12943-018-0782-4
5.    Zhao Z. Bourne PE. Progress with covalent small-molecule kinase inhibitors. Drug Discovery Today. 2018; 23(3): 727-35. https://doi.org/10.1016/j.drudis.2018.01.035
6.    Maurer G. Tarkowski B. Baccarini M. Raf kinases in cancer–roles and therapeutic opportunities. Oncogene. 2011; 30(32): 3477-88. https://doi.org/10.1038/onc.2011.160
7.    Gudimetla K. Prabhakar O. Pal A. Review on Pathophysiological and Pharmacotherapeutic approach on Chronic Myeloid Leukemia. Research Journal of Pharmacy and Technology. 2020; 13(6): 2971-6. http://dx.doi.org/10.5958/0974-360X.2020.00526.0
8.    Oda K.. Matsuoka Y. Funahashi A. Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Molecular Systems Biology. 2005; 1(1): 2005-0010. https://doi.org/10.1038/msb4100014
9.    Syed YY. Zanubrutinib: first approval. Drugs. 2020; 80(1): 91-7. https://doi.org/10.1007/s40265-019-01252-4 Markham A. Dhillon S. Acalabrutinib: First Global Approval. Drugs, 2018; 78: 139-45. https://doi.org/10.1007/s40265-017-0852-8
10.    Lemmon MA. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010; 141(7): 1117-34. https://doi.org/10.1016/j.cell.2010.06.011
11.    Arteaga CL. The epidermal growth factor receptor: from mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. Journal of clinical oncology: Official Journal of the American Society of Clinical Oncology. 2001; 19(18): 32S-40S.
12.    Bergsland EK. Vascular endothelial growth factor as a therapeutic target in cancer. American journal of health-system pharmacy. 2004; 61(5): S4-11. https://doi.org/10.1093/ajhp/61.suppl_5.S4
13.    Gudimetla K. Prabhakar O. Pal A. Review on Pathophysiological and Pharmacotherapeutic approach on Chronic Myeloid Leukemia. Research Journal of Pharmacy and Technology. 2020; 13(6): 2971-6. https://doi.org/10.5958/0974-360X.2020.00526.0
14.    Wikstrand CJ. Bigner DD. Prognostic applications of the epidermal growth factor receptor and its ligand, transforming growth factor-α. JNCI: Journal of the National Cancer Institute. 1998; 90(11): 799-813. https://doi.org/10.1093/jnci/90.11.799
15.    Shigematsu H. Lin L. Takahashi T. Nomura M. Suzuki M. Wistuba II. Fong KM. Lee H. Toyooka S. Shimizu N. Fujisawa T. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute. 2005; 97(5): 339:46. https://doi.org/10.1093/jnci/dji055
16.    Maione P. Sacco PC. Sgambato A. Casaluce F. Rossi A. Gridelli C. Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application. Therapeutic Advances in Medical Oncology. 2015; 7(5): 263-73. https://doi.org/10.1177/1758834015595048
17.    Robert J. Flanagan. Eva C. Hans H. Maurer. Robin W. Therapeutic Drug Monitoring, in Fundamentals of Analytical Toxicology. 2020; 479-504. https://doi.org/10.1002/9781119122357.ch20
18.    Kulkarni P. Karanam A. Gurjar M. Dhoble S. Naik AB. Vidhun BH. Gota V. Effect of various anticoagulants on the bioanalysis of drugs in rat blood: implication for pharmacokinetic studies of anticancer drugs. Springerplus. 2016; 5: 1-8. https://doi.org/10.1186/s40064-016-3770-4
19.    Raju CP. Babu GR. Sowjanya M. Ramayyappa M. Evaluation of Cancer Bio-markers through Hyphenated Analytical Techniques. Asian Journal of Pharmaceutical Analysis. 2021; 11(3): 235-42. http://dx.doi.org/10.52711/2231-5675.2021.00041
20.    Khan ZG. Bari SB. Gujarathi SN. Gujarathi SB. Patil PB. Azilsartan: A Review of Analytical Methods for estimation in Pharmaceutical Formulation. Asian Journal of Pharmaceutical Analysis. 2018; 8(4): 227-32. http://dx.doi.org/10.5958/2231-5675.2018.00041.8
21.    Vyas AK. Mishra SB. Patel AB. Patel NK. Shah SR. Sheth DB. A brief review on liquid chromatography-mass spectrometry/  LC MS and its application. Asian Journal of Pharmaceutical Analysis. 2022; 12(3): 203-10. http://dx.doi.org/10.52711/2231-5675.2022.00034
22.    Saha D. Design and Potential of Mass Spectrometry. Asian Journal of Pharmaceutical Analysis. 2011; 1(1): 1-2.
23.    Liu W. Li S. Wu Y. Yan X. Zhu YM. Huang JH. Chen Z. Metabolic profiles of neratinib in rat by using ultra‐high‐performance liquid chromatography coupled with diode array detector and Q‐Exactive Orbitrap tandem mass spectrometry. Biomedical Chromatography. 2018; 32 (9): 42-72. https://doi.org/10.1002/bmc.4272
24.    Dong J. Li S. Liu G. In vitro metabolism of ibrutinib in rat, dog and human hepatocytes using liquid chromatography combined with diode‐array detection and Q‐Exactive Orbitrap tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2019; 33(23): 1804-15. https://doi.org/10.1002/rcm.8542
25.    Stoev G. Stoyanov A. Comparison of the reliability of the identification with diode array detector and mass spectrometry. Journal of Chromatography A. 2007; 1150(1-2): 302-11. https://doi.org/10.1016/j.chroma.2006.12.026
26.    Carvalho DO. Curto AF. Guido LF. Determination of phenolic content in different barley varieties and corresponding malts by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Antioxidants. 2015; 4(3): 563-76. https://doi.org/10.3390/antiox4030563
27.    Rood JJ. Schellens JH. Beijnen JH. Sparidans RW. Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. Journal of Pharmaceutical and Biomedical Analysis. 2016; 130: 244-63. https://doi.org/10.1016/j.jpba.2016.06.037
28.    Poitout‐Belissent F. Aulbach A. Tripathi N. Ramaiah L. Reducing blood volume requirements for clinical pathology testing in toxicologic studies points to consider. Veterinary Clinical Pathology. 2016; 45(4): 534-51. https://doi.org/10.1111/vcp.12429
29.    Jiang W. Zhao T. Zhen X. Jin C. Li H. Ha J. Rapid Determination of 9 Tyrosine Kinase Inhibitors for the Treatment of Hepatocellular Carcinoma in Human Plasma by QuEChERS-UPLC-MS/MS. Frontiers in Pharmacology. 2022; 13: 920436. https://doi.org/10.3389/fphar.2022.920436
30.    Alrabiah H. Kadi AA. Attwa MW. Abdelhameed AS. A simple liquid chromatography-tandem mass spectrometry method to accurately determine the novel third-generation EGFR-TKI naquotinib with its applicability to metabolic stability assessment. RSC Advances. 2019; 9(9): 4862-9. https://doi.org/10.1039/C8RA09812C
31.    Khan H. Analytical Method Development in Pharmaceutical Research: Steps involved in HPLC Method Development. Asian Journal of Pharmaceutical Research. 2017; 7(3): 203-7. http://dx.doi.org/10.5958/2231-5691.2017.00031.4
32.    Bao SS. Wen J. Liu TH. Zhang BW. Wang CC. Hu GX. A UHPLC–MS/MS method for the quantitation of olmutinib in rat plasma. Acta Chromatographica. 2019; 31(2): 105-8. https://doi.org/10.1556/1326.2018.00375
33.    Maher HM. Alzoman NZ. Shehata SM.  Abahussain AO. Comparative pharmacokinetic profiles of selected irreversible tyrosine kinase inhibitors, neratinib and pelitinib, with apigenin in rat plasma by UPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis. 2017; 137: 258-67. https://doi.org/10.1016/j.jpba.2017.01.039
34.    Abdelhameed AS. Attwa MW. Al-Shaklia NS. Kadi AA. A highly sensitive LC-MS/MS method to determine novel Bruton's tyrosine kinase inhibitor spebrutinib: application to metabolic stability evaluation. Royal Society Open Science. 2019; 6(6):      190-434. https://doi.org/10.1098/rsos.190434
35.    Anastas PT. Warner JC. Green chemistry. Frontiers, 2004; 24(7-8): 775-799. http://dx.doi.org/10.1016/j.eiar.2004.06.006
36.    Inturi S. Avula PR. A sensitive bioanalytical method development and validation of cabozantinib in human plasma by LC-ESI-MS/MS. Brazilian Journal of Pharmaceutical Sciences. 2018; 54(2): e17163. https://doi.or/10.1590/s2175-97902018000217163
37.    Patil SD. Dugaje T. Kshirsagar SJ. Development and Validation of HPLC Method for Estimation of Pharmaceutical Drug and its Stability Studies in Simulated Biological Fluid: Comparative Study. Asian Journal of Pharmacy and Technology. 2019; 9(3): 179-84. http://dx.doi.org/10.5958/2231-5713.2019.00030.8
38.    Satyanarayana L. Naidu SV. Rao MN. Latha RS. The Estimation of Nilotinib in Capsule dosage form by RP-HPLC. Asian Journal of Pharmaceutical Research. 2011; 1(3): 78-80.
39.    Kalaichelvi R.  Jayachandran E. Quantitative Estimation of SorafenibTosylate Its Pure Form and in Its Tablet Formulation by RP-HPLC Method. Journal of Chemistry. 2012; 2013(539264). https://doi.org/10.1155/2013/539264
40.    Sandhya P. Vishnu P. Anjali N. Method development and validation of Imatinib Mesylate in Pharmaceutical dosage form by RP-HPLC. World Journal of Pharmacy and Pharmaceutical Sciences. 2013; 3 (1): 682-8.
41.    Dutta D. Das S. Ghosh M. Validated HPTLC method for the determination of nintedanib in bulk drug. Multidisciplinary Digital Publishing Institute Proceedings. 2018; 9(1): 22. https://doi.org/10.3390/ecsoc-22-05675
42.    Blanchet B. Saboureau C. Benichou AS. Billemont B. Taieb F. Ropert S. Dauphin A. Goldwasser F. Tod M. Development and validation of an HPLC-UV-visible method for sunitinib quantification in human plasma. Clinica Chimica Acta. 2009; 404(2): 134-9. https://doi.org/10.1016/j.cca.2009.03.042
43.    Liu Y. Simultaneous and Rapid Determination of Six Tyrosine Kinase Inhibitors in Patients with Non-Small Cell Lung Cancer using HPLC-MS/MS. International Journal of Analytical Chemistry. 2021; 5524361. https://doi.org/10.1155%2F2021%2F5524361
44.    Adcock IM. Chung KF. Caramori G. Ito K. Retracted: Kinase inhibitors and airway inflammation. European Journal of Pharmacology. 2006; 533(1-3): 118-32. https://doi.org/10.1016/j.ejphar.2005.12.054
45.    Attimarad M. Ahmed KM. Aldhubaib BE. Harsha S. High-performance thin layer chromatography: A powerful analytical technique in pharmaceutical drug discovery. Pharmaceutical Methods. 2011; 2(2): 71-5. https://doi.org/10.4103/2229-4708.84436
46.    Ivanovic D. Medenica M. Jancic B. Malenovic A. Reversed-phase liquid chromatography analysis of imatinib mesylate and impurity product in Glivec® capsules. Journal of Chromatography B.2004; 800(1-2): 253-8. https://doi.org/10.1016/j.jchromb.2003.10.018
47.    Dhandhukia PC. Thakker JN. Quantitative analysis and validation of method using HPTLC. In High-performance thin-layer chromatography (HPTLC). 2010: 203-221. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14025-9_12
48.    Watt AP. Morrison D. Locker KL. Evans DC. Higher throughput bioanalysis by automation of a protein precipitation assay using a 96-well format with detection by LC− MS/MS. Analytical Chemistry. 2000; 72(5): 979-84. https://doi.org/10.1021/ac9906633
49.    Reddy M. Swaminathan S. Review on Analytical Method Development and Validation by HPLC/LC-MS of Selected Anti-Cancer Drugs. World Journal of Pharmacy and Pharmaceutical Sciences. 2017; 6(4): 470-481. http://dx.doi.org/10.20959/wjpps20174-8876
50.    Vadera N. Subramanian G. Musmade P. Stability-indicating HPTLC determination of imatinib mesylate in bulk drug and pharmaceutical dosage form. Journal of Pharmaceutical and Biomedical Analysis. 2007; 43(2): 722-6. https://doi.org/10.1016/j.jpba.2006.07.022
51.    Merienne C. Rousset M. Ducint D. Castaing N. Titier K. Molimard M. Bouchet S. High throughput routine determination of 17 tyrosine kinase inhibitors by LC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis. 2018; 150: 112-20. https://doi.org/10.1016/j.jpba.2017.11.060
52.    Huynh HH. Pressiat C. Sauvageon H. Madelaine I. Maslanka P. Lebbé C. Thieblemont C. Goldwirt L. Mourah S. Development and validation of a simultaneous quantification method of 14 tyrosine kinase inhibitors in human plasma using LC-MS/MS. Therapeutic Drug Monitoring. 2017; 39(1): 43-54. https://doi.org/10.1097/FTD.0000000000000357
53.    Koller D. Vaitsekhovich V.  Mba C, Steegmann JL, Zubiaur P, Abad-Santos F, Wojnicz A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta. 2020; 208: 120450. https://doi.org/10.1016/j.talanta.2019.120450


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available