Author(s): Divya Dhawal Bhandari, Prabhjot Kaur, Monika Maan, Ruchika Garg, Hitesh Chopra, Mohammad Amjad Kamal

Email(s): rrs.usa.au@gmail.com

DOI: 10.52711/0974-360X.2024.00460   

Address: Divya Dhawal Bhandari1, Prabhjot Kaur2, Monika Maan3, Ruchika Garg4, Hitesh Chopra5, Mohammad Amjad Kamal6-9*
1University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India.
2School of Pharmaceutical Sciences, RIMT University, Mandi Gobindgarh, Punjab, India.
3Faculty of Pharmaceutical Sciences, Lal Bahadur Shastri College of Pharmacy, Tilak Nagar, Jaipur, Rajasthan.
4University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali, Punjab.
5Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai - 602105, Tamil Nadu, India.
6Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China.
7King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia.
8Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh.
9Enzymoics, 7 Pete

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Degenerative diseases of nerves are associated with the progressive loss of a specific function of neurons resulting in cell death or some abnormal functions of organs. Neurodegeneration is associated with dysfunctioning of well-being and involves muscular symptoms like tremor, loss of memory, diminished intellect and speech problems, weak or paralyzed muscles, numbness, and partial loss of senses. Heterocyclic compounds have a wide range of structural diversity and have proven to be widely and economically useful as therapeutic agents. Extensive research on the therapeutic potentials of heterocyclic compounds has confirmed their enormous importance in the pathophysiology of neurodegenerative diseases. Various researchers have evaluated the neuroprotective activity of various heterocyclic nuclei. Despite the availability of many heterocyclic drugs against these disorders, a satisfactory treatment is still not available to rely upon. Herbal treatments are gaining the interest of researchers due to their wide availability with the least side effects. The purpose of this review article is to go over the research that has been done on the neuroprotective potentials of heterocyclic scaffolds in comparison with the upcoming herbal treatments to treat degeneration of nerves.


Cite this article:
Divya Dhawal Bhandari, Prabhjot Kaur, Monika Maan, Ruchika Garg, Hitesh Chopra, Mohammad Amjad Kamal. Neuroprotective Potential of Heterocyclic Scaffolds vs Herbal Treatments: An Overview. Research Journal of Pharmacy and Technology. 2024; 17(6):2943-8. doi: 10.52711/0974-360X.2024.00460

Cite(Electronic):
Divya Dhawal Bhandari, Prabhjot Kaur, Monika Maan, Ruchika Garg, Hitesh Chopra, Mohammad Amjad Kamal. Neuroprotective Potential of Heterocyclic Scaffolds vs Herbal Treatments: An Overview. Research Journal of Pharmacy and Technology. 2024; 17(6):2943-8. doi: 10.52711/0974-360X.2024.00460   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-79


REFERENCES:
1.    Singh S, Bhandari DD, Gupta M, Singh J. Design, Synthesis and Anticancer potential evaluation of Novel Naphthoic Acid linked Imidazo [2, 1-b][1, 3, 4] thiadiazoles. Research Journal of Pharmacy and Technology. 2022; 15(10): 4405-12.
2.    Kaur P, Sodhi RK. Memory recuperative potential of rifampicin in aluminum chloride-induced dementia: role of pregnane X receptors. Neuroscience. 2015; 288: 24-36.
3.    Rohit Sharma, Kamil Kuca, Eugenie Nepovimova, Atul Kabra, MM Rao, PK Prajapati. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease. Bench to Bedside. 2019; 15(3); 359-374.
4.    Anandhan K, Tamilselvam T, Radhiga S, Rao MM, Essa TM. Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson's disease. Brain Res. 2012; 1433: 104–113.
5.    Zbarsky V, Datla KV, Parkar S, Rai DK, Aruoma OI, Dexter DT. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson's disease. Free Radic. Res. 2005; 39: 1119–1125.
6.    Beppe, G. J., Dongmo, A. B., Foyet, H. S., Dimo, T., Mihasan, M., and Hritcu, L. The aqueous extract of Albiziaadianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complementary and Alternative Medicine. 2015; 15(1): 1-13.
7.    Zhang, H. N., An, C. N., Zhang, H. N., and Pu, X. P. Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neuroscience Letters. 2010; 474(2): 99-103.
8.    Magnnavar, Chandrashekhar V., Avinash S. Panji, and Sowmya Chinnam. Neuroprotective Activity of Berberisaristata against 6‐OHDA Induced Parkinson's Disease Model. 2013: 890-16.
9.    Nade, V. S., Kawale, L. A., Zambre, S. S., and Kapure, A. B. Neuroprotective potential of Beta vulgaris L. in Parkinson's disease. Indian Journal of Pharmacology. 2015; 47(4): 403.
10.    Ren, R., Shi, C., Cao, J., Sun, Y., Zhao, X., Guo, Y., ... and Han, H. Neuroprotective effects of a standardized flavonoid extract of safflower against neurotoxin-induced cellular and animal models of Parkinson’s disease. Scientific reports. 2016; 6(1): 1-13.
11.    Auddy, B., Ferreira, M., Blasina, F., Lafon, L., Arredondo, F., Dajas, F. and Mukherjee, B. (). Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. Journal of Ethnopharmacology. 2003; 84(2-3): 131-138.
12.    Alam, G., Edler, M., Burchfield, S., and Richardson, J. R. Single low doses of MPTP decrease tyrosine hydroxylase expression in the absence of overt neuron loss. Neurotoxicology, 2017; 60: 99-106.
13.    Zou, Y. P., Lu, Y. H., and Wei, D. Z. Protective effects of a flavonoid‐rich extract of Hypericumperforatum L. against hydrogen peroxide‐induced apoptosis in PC12 cells. Phytotherapy Research. 2010; 24(S1): S6-S10.
14.    Kang, X., Chen, J., Xu, Z., Li, H., and Wang, B. Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells. Toxicology in Vitro. 2007; 21(6): 1003-1009.
15.    Muroyama, A., Fujita, A., Lv, C., Kobayashi, S., Fukuyama, Y., and Mitsumoto, Y. Magnolol protects against MPTP/MPP+-Induced toxicity via Inhibition of oxidative stress in In vivo and In vitro models of parkinson’s disease. Parkinson’s Disease, 2012.
16.    Kim, HyoGeun, Mi Sun Ju, Jin Sup Shim, Min Cheol Kim, Sang-Hun Lee, Youngbuhm Huh, Sun Yeou Kim, and Myung Sook Oh. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson's disease models. British Journal of Nutrition. 2010; 104(1): 8-16.
17.    Ray S, Ray A. Medhya Rasayanas in brain function and disease. Med Chem. 2015; 5: 505-511.
18.    Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behavioral Neurosci. 1998; 112: 1199-208.
19.    Lee YK, Yuk DY, Kim TI, Kim YH, Kim KT, Kim KH, Lee BJ, Nam SY, Hong JT. Protective effect of the ethanol extract of M. officinalis and 4-O-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J. Nat. Med. 2009; 63: 274-282.
20.    Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharmaceutical Biol. 2011; 49: 1234-1242.
21.    Nahata A, Patil UK, Dixit VK. Effect of Convolvulus pluricaulis on learning behavior and memory enhancement activity in rodents. Nat Pro Res. 2008; 22: 1472-1482.
22.    Da Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA, Barreiro EJ, Viegas C. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer's disease. CNS NeurolDisord Drug Targets. 2011; 10: 251-270.
23.    Jansen RLM, Brogan B, Whitworth AJ, Okello EJ. Effects of five ayurvedic herbs on locomotor behaviour in a drosophila melanogaster parkinson's disease model. Phytother Res. 2014; 28: 1789–1795.
24.    Smerq J, Sharma M. Possible mechanism of murrayakoenigii and cinnamomumtamala with reference to antioxidants activity. Int. J. Pharm. Sci. Drug Res. 2011; 3: 260-264.
25.    Singh A, Agarwal S, Singh S. Age related neurodegenerative Alzheimer’s disease: Usage of traditional herbs in therapeutics. Neurosci Let. 2019; 717: 1346-79.
26.    Hosamani R, Krishna G, Muralidhara. Standardized Bacopamonnieri extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. Nutr. Neurosci. 2016; 19: 434–446.
27.    Siddique YH, Mujtaba SF, Faisal M, Jyoti S, Naz F. The effect of Bacopamonnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson's disease. Eur. J. Integr. Med. 2014; 6: 571–580.
28.    Chaturvedi RK, Shukla S, Seth K, Chauhan S, Sinha C, Shukla Y. Neuroprotective and neurorescue effect of black tea extract in 6- hydroxydopamine-lesioned rat model of Parkinson's disease. Neurobiol. Dis. 2006; 22: 421–434.
29.    Yadav SK, Prakash J, Chouhan S, Singh SP. Mucunapruriens seed extract reduces oxidative stress in nigrostriatal tissue and improves neurobehavioral activity in paraquat-induced Parkinsonian mouse model. Neurochem. Int. 2013; 62: 1039–1047.
30.    Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN. Neuroprotective effects of Withaniasomnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum. Exp. Toxicol. 2005; 24: 137–147.
31.    Hiremathad A, Piemontese L. Heterocyclic compounds as key structures for the interaction with old and new targets in Alzheimer's disease therapy. Neural Regen Res. 2017; 12(8): 1256-1261.
32.    Martorana A, Giacalone V, Bonsignore R, Pace A, Gentile C, Pibiri I, Buscemi S, Lauria A, Piccionello AP. Heterocyclic scaffolds for the treatment of Alzheimer’s disease. Curr Pharm Des. 2016; 22: 3971–3995.
33.    Monjas L, Arce MP, León R, Egea J, Pérez C, Villarroya M, López MG, Gil C, Conde S, Isabel Rodríguez-Franco M. Enzymatic and solid-phase synthesis of new donepezilbased L- and D-glutamic acid derivatives and their pharmacological evaluation in models related to Alzheimer’s disease and cerebral ischemia. Eur J Med Chem. 2017; 13: 60–72.
34.    Nunes A, Marques SM, Quintanova C, Silva DF, Cardoso SM, Chaves S, Santos MA. Multifunctional iron-chelators with protective roles against neurodegenerative diseases. Dalton Trans. 2013; 42: 6058–6073.
35.    Summerlin N, Soo E, Thakur S, Qua Z, Jambhrunkar S, Popat A.  Resveratrol nanoformulations: challenges and opportunities. Int. J. Pharm. 2015; 479: 282–290.
36.    Sun XZ, Williams GR, Hou XX, Zhu LM. Electrospun curcumin-loaded fibers with potential biomedical applications. Carbohydr Polym. 2013; 94(1): 147–153.
37.    Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P. Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer. 2007; 48: 7546–7557.
38.    Suwantong O, Ruktanonchai U, Supaphol P. Electrospun cellulose acetate fiber mats containing asiaticoside or Centellaasiatica crude extract and the release characteristics of asiaticoside. Polymer. 2008; 49: 4239–4247.
39.    Suwantong O, Ruktanonchai U, Supaphol P. In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin. J Biomed Mater Res A. 2010; 94(4): 1216–1225.
40.    Tang L, Zhang Y, Jiang Y, Willard L, Ortiz E, Wark L, Medeiros D, Lin D. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Exp Biol Med.(Maywood). 2011; 236(9): 1051–1063.
41.    Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol. 2006; 11(3): 217–22


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available