Author(s): U. S. Mahadeva Rao, G. Shoba, A. Subramani, P. Tamizhdurai, R. Selvam, B. Priyankaa, G. Sriram Prasath

Email(s): sriram@dgvaishnavcollege.edu.in

DOI: 10.52711/0974-360X.2024.00458   

Address: U. S. Mahadeva Rao1, G. Shoba2, A. Subramani3, P. Tamizhdurai4, R. Selvam3, B. Priyankaa3 , G. Sriram Prasath3*
1Professor, School of Basic Medical Sciences, Faculty of Medicine, Kampus Perubatan, Universiti Sultan Zainal Abdin 20400 Kuala Terengganu Malaysia.
2Post Graduate, Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai - 106, Tamilnadu. India.
3Post Graduate and Research, Department of Biochemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai - 106, Tamilnadu. India.
4Post Graduate and Research, Department of Chemistry, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai - 106, Tamilnadu. India.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
The prevalence of diabetes throughout the world has increased alarmingly over the recent past and the scenario will be increased in the future. There are many medications available to treat diabetes, but none have proven to be the best option for a number of reasons, including unfavourable side effects and diminishing effectiveness with continued use. Global interest and attention in plant-derived medical products for the treatment of various illnesses has increased within the past ten years. Fisetin (3, 3', 4', 7 - tetrahydroxy flavone), a major flavonoid present in strawberries, onion, persimmon exhibits various biological properties such as anticancer, antioxidant, anti-inflammatory and antidiabetic effects. Fisetin exert its antidiabetic potential by regulating the key enzymes of carbohydrate metabolism. Current study is designed in evaluating the glucose uptake potential of fisetin on L6 myotubes. We have observed that Fisetin facilitated the uptake of glucose in rat L6 myotubes. To study molecular interactions, Fisetin was subjected to docking against 3D structure of Diabetic targets PEPCK and GSK3B using Autodock 4.2 and their molecular interactions were visualized using Biovia discovery studio visualizer. Docking interactions and ADMET studies of the fisetin signified the application as a natural therapeutic agent to combat diabetes.


Cite this article:
U. S. Mahadeva Rao, G. Shoba, A. Subramani, P. Tamizhdurai, R. Selvam, B. Priyankaa, G. Sriram Prasath. In vitro and In silico Studies on Antidiabetic properties of Fisetin: Focus on interactions with PEPCK and GSK3β. Research Journal of Pharmacy and Technology. 2024; 17(6):2925-2. doi: 10.52711/0974-360X.2024.00458

Cite(Electronic):
U. S. Mahadeva Rao, G. Shoba, A. Subramani, P. Tamizhdurai, R. Selvam, B. Priyankaa, G. Sriram Prasath. In vitro and In silico Studies on Antidiabetic properties of Fisetin: Focus on interactions with PEPCK and GSK3β. Research Journal of Pharmacy and Technology. 2024; 17(6):2925-2. doi: 10.52711/0974-360X.2024.00458   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-77


REFERENCES:
1.    Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019; Dec; 576(7785): 51-60. doi: 10.1038/s41586-019-1797-8.
2.    Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. 2005; Apr 9-15; 365(9467): 1333-46. doi: 10.1016/S0140-6736(05)61032-X.
3.    Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999; Sep; 104(6): 787-94. doi: 10.1172/JCI7231.
4.    Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal. 2012; Jul 15; 17(2): 327-39. doi: 10.1089/ars.2012.4600.
5.    Oz AT, Kafkas E. Phytochemicals in Fruits and Vegetables [Internet]. Superfood and Functional Food - An Overview of Their Processing and Utilization. InTech; 2017.
6.    Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000; Sep; 130(9): 2243-50. doi: 10.1093/jn/130.9.2243.
7.    Prasath GS, Subramanian SP. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2011; Oct 15; 668(3): 492-6. doi: 10.1016/j.ejphar.2011.07.021.
8.    Prasath GS, Pillai SI, Subramanian SP. Fisetin improves glucose homeostasis through the inhibition of gluconeogenic enzymes in hepatic tissues of streptozotocin induced diabetic rats. Eur J Pharmacol. 2014; Oct 5; 740: 248-54. doi: 10.1016/j.ejphar.2014.06.065. Epub 2014 Jul 24.
9.    Lengauer T, Rarey M. Computational methods for biomolecular docking. Curr Opin Struct Biol. 1996; Jun; 6(3): 402-6. doi: 10.1016/s0959-440x(96)80061-3.
10.    Bissantz C, Folkers G, Rognan D. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem. 2000; Dec 14; 43(25): 4759-67. doi: 10.1021/jm001044l.
11.    Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov. 2004; Nov; 3(11): 935-49. doi: 10.1038/nrd1549.
12.    Sinha S, Perdomo G, Brown NF, O'Doherty RM. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem. 2004; Oct 1; 279(40): 41294-301. doi: 10.1074/jbc.M406514200.
13.    Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; Dec 16; 65(1-2): 55-63. doi: 10.1016/0022-1759(83)90303-4.
14.    Hong NY, Cui ZG, Kang HK, Lee DH, Lee YK, Park DB. p-Synephrine stimulates glucose consumption via AMPK in L6 skeletal muscle cells. Biochem Biophys Res Commun. 2012; Feb 24; 418(4): 720-4. doi: 10.1016/j.bbrc.2012.01.085.
15.    Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015; May 14; 58(9): 4066-72. doi: 10.1021/acs.jmedchem.5b00104.
16.    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J. (1998), Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19: 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
17.    Chanon S, Durand C, Vieille-Marchiset A, Robert M, Dibner C, Simon C, Lefai E. Glucose Uptake Measurement and Response to Insulin Stimulation in In Vitro Cultured Human Primary Myotubes. J Vis Exp. 2017; Jun 25; (124): 55743. doi: 10.3791/55743.
18.    Nedachi T, Kanzaki M. Regulation of glucose transporters by insulin and extracellular glucose in C2C12 myotubes. Am J Physiol Endocrinol Metab. 2006; Oct; 291(4): E817-28. doi: 10.1152/ajpendo.00194.2006.
19.    Sarabia V, Ramlal T, Klip A. Glucose uptake in human and animal muscle cells in culture. Biochem Cell Biol. 1990; Feb; 68(2): 536-42. doi: 10.1139/o90-076.
20.    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; Mar 1; 46(1-3): 3-26. doi: 10.1016/s0169-409x(00)00129-0.
21.    Gleeson MP. Generation of a set of simple, interpretable ADMET rules of thumb. J Med Chem. 2008; Feb 28; 51(4): 817-34. doi: 10.1021/jm701122q.
22.    Pires DEV, Kaminskas LM, Ascher DB. Prediction and Optimization of Pharmacokinetic and Toxicity Properties of the Ligand. Methods Mol Biol. 2018; 1762: 271-284. doi: 10.1007/978-1-4939-7756-7_14.
23.    Lagorce, D. et al. In ADMET for Medicinal Chemists: A Practical Guide (eds K. Tsaioun andamp; S. A. Kates) (John Wiley andamp; Sons, Inc., 2010).
24.    Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep. 2017; Apr 11; 7: 46277. doi: 10.1038/srep46277.
25.    Kaminskas LM, McLeod VM, Ascher DB, Ryan GM, Jones S, Haynes JM, Trevaskis NL, Chan LJ, Sloan EK, Finnin BA, Williamson M, Velkov T, Williams ED, Kelly BD, Owen DJ, Porter CJ. Methotrexate-conjugated PEGylated dendrimers show differential patterns of deposition and activity in tumor-burdened lymph nodes after intravenous and subcutaneous administration in rats. Mol Pharm. 2015; Feb 2; 12(2): 432-43. doi: 10.1021/mp500531e. Epub 2015 Jan 20.
26.    Isvoran A, Louet M, Vladoiu DL, Craciun D, Loriot MA, Villoutreix BO, Miteva MA. Pharmacogenomics of the cytochrome P450 2C family: impacts of amino acid variations on drug metabolism. Drug Discov Today. 2017; Feb; 22(2): 366-376. doi: 10.1016/j.drudis.2016.09.015.
27.    Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P. In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Front Pharmacol. 2019; Apr 24; 10: 434. doi: 10.3389/fphar.2019.00434.
28.    Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes. 1999; May; 48(5): 1198-214. doi: 10.2337/diabetes.48.5.1198.
29.    O'Brien RM, Granner DK. Regulation of gene expression by insulin. Biochem J. 1991; Sep 15; 278 (Pt 3)(Pt 3): 609-19. doi: 10.1042/bj2780609.
30.    Pilkis SJ, Granner DK. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu Rev Physiol. 1992; 54: 885-909. doi: 10.1146/annurev.ph.54.030192.004321.
31.    O'Brien RM, Streeper RS, Ayala JE, Stadelmaier BT, Hornbuckle LA. Insulin-regulated gene expression. Biochem Soc Trans. 2001; Aug; 29(Pt 4): 552-8. doi: 10.1042/bst0290552.
32.    Stalmans W, Bollen M, Toth B, Gergely P. Short-term hormonal control of protein phosphatases involved in hepatic glycogen metabolism. Adv Enzyme Regul. 1990; 30: 305-27. doi: 10.1016/0065-2571(90)90024-v.
33.    Roach PJ. Glycogen synthase and glycogen synthase kinases. Curr Top Cell Regul. 1981; 20: 45-105. doi: 10.1016/b978-0-12-152820-1.50006-7.
34.    Pires DE, Blundell TL, Ascher DB. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J Med Chem. 2015; May 14; 58(9): 4066-72. doi: 10.1021/acs.jmedchem.5b00104. Epub 2015 Apr 22.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available