Author(s): Hasnah Natsir, Ahyar Ahmad, Nasrum Massi, Paulina Taba, Anita, Wahyudin Rauf

Email(s): ,

DOI: 10.52711/0974-360X.2024.00448   

Address: Hasnah Natsir1*, Ahyar Ahmad1, Nasrum Massi 2, Paulina Taba1, Anita3,4, Wahyudin Rauf3
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.
2Microbiology Department, Medicine Faculty, Hasanuddin University, Makassar 90245, Indonesia.
3 Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.
4Medical Laboratory Technology, Polytechnic of Muhammadiyah Makassar, Makassar 90132, Indonesia.
5Magister Program of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024

Protease is an enzyme that hydrolyses peptide bonds in amino acid residues of proteins and is essential for many metabolic processes. However, in the development of biotechnology, proteolytic enzymes play an important role in various industrial processes, including in the detergent, leather, textile, food, and pharmaceutical industries. Marine sediment ecosystems provide a diversity of microorganisms with the ability to produce the extracellular proteolytic enzyme. Compared to other varieties, marine bacteria are a more profitable and easier-to-produce source of protease because they are unique, specific, and resistant to salinity, temperature, light, and extreme environments. This research aims to isolate and characterize protease-marine sediment bacteria as an antimicrobial application. Samples were collected from marine sediments in Losari Coastal, Makassar City, South Sulawesi, Indonesia, and isolated bacteria were subjected to primary and secondary screening to select potential protease producers. The isolated bacteria were identified using macroscopy, microscopy, and gene sequencing (16S rRNA). The extracellular protease enzyme will be continued for antimicrobial applications. Based on the results, proteolytic MBS-L3 isolate obtained from marine sediments are capable of hydrolysing skim milk and casein substrates at 40oC. Next, the MBS-L3 isolate was identified as a round colony with a scalloped margin, a smooth, convex shape, and bacilli or rod-shaped gram-negative bacteria. Molecular characterization revealed that the MBS-L3 isolate has 98.893% identity to Vibrio alginolyticus strain NRBC 15630. The extracellular protease of the MBS-L3 isolate was exhibited against Staphylococcus aureus ATCC 25922 and against Escherichia coli ATCC 25923. According to these findings, proteolytic MBS-L3 isolates from marine sediments provide potential opportunities for new drugs for commercial use in the fields of medicine, pharmaceuticals, and biotechnology.

Cite this article:
Hasnah Natsir, Ahyar Ahmad, Nasrum Massi, Paulina Taba, Anita, Wahyudin Rauf. Isolation, Production of Protease, and Antimicrobial Activities from Marine Sediment Gamma - Proteobacteria of MBS-L3 Isolate. Research Journal of Pharmacy and Technology. 2024; 17(6):2855-2. doi: 10.52711/0974-360X.2024.00448

Hasnah Natsir, Ahyar Ahmad, Nasrum Massi, Paulina Taba, Anita, Wahyudin Rauf. Isolation, Production of Protease, and Antimicrobial Activities from Marine Sediment Gamma - Proteobacteria of MBS-L3 Isolate. Research Journal of Pharmacy and Technology. 2024; 17(6):2855-2. doi: 10.52711/0974-360X.2024.00448   Available on:

1.    Adan A, Kiraz Y, Baran Y. Cell Proliferation and Cytotoxicity Assays. Curr Pharm Biotechnol. 2016; 17(14): 1213-1221. doi:10.2174/1389201017666160808160513
2.    Hafsan H, Ramadani K, Abbas A. Protease Activity of Thermophilic Bacteria From Lejja Hot Springs in Soppeng South Sulawesi. JST (Jurnal Sains dan Teknol. 2021; 10(2): 211-219. doi:10.23887/jstundiksha.v10i2.38367
3.    Sulaiman NA, Mahadi NM, Ramly NZ. Biochemical properties and potential application of proteases from alkalophilic Bacillus lehensis G1. Trop Life Sci Res. 2019; 30(2): 25-37. doi:10.21315/tlsr2019.30.2.3
4.    J. Madhusudhanan, M. Indumathi SA. A Novel System for Drug Delivery Using Nanoparticle. Asian J Pharm Tech. 2013; 3(4): 137-141. Journal of Pharmacy and Technology;PID=2013-3-4-1
5.    Chandrashekharaiah K S, Sangeetha K B, Bharadwaj Rajiv RNRSNG. Protease Inhibitors from the seeds of Senna sophera: Isolation and Properties. Res J Pharmacogn Phytochem. 2018; 10(1): 139-140.; PID=2018-10-1-20
6.    Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. J Genet Eng Biotechnol. 2017; 15(1): 115-126. doi:10.1016/j.jgeb.2017.02.001
7.    Razzaq A, Shamsi S, Ali A, et al. Microbial proteases applications. Front Bioeng Biotechnol. 2019; 7: 1-20. doi:10.3389/fbioe.2019.00110
8.    Jacob E, Jose R, Ullas G, Paul NM. Isolation and molecular characterization of azo-dye degrading bacteria from soil. AIP Conf Proc. 2020; 2263(1): 10-14. doi:10.1063/5.0018150
9.    Ray A. Protease Enzyme- Potential Industrial Scope. Int. J. Tech. 2012; 2(1): 01-05. Journal of Technology;PID=2012-2-1-1
10.    Solanki P, Putatunda C, Kumar A, Bhatia R, Walia A. Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech. 2021; 11(10): 428. doi:10.1007/s13205-021-02928-z
11.    Hari S. Screening of Enzymes from Actinomycetes and Fungi isolated from Plastic Dumped Soil. Res. J. Pharm. Tech. 219AD; 12(5): 2261-2266. Journal of Pharmacy and Technology;PID=2019-12-5-35
12.    Zhai W, Li X, Duan X, Gou C, Wang L, Gao Y. Development of a microbial protease for composting swine carcasses, optimization of its production and elucidation of its catalytic hydrolysis mechanism. BMC Biotechnol. 2022; 22(1): 36. doi:10.1186/s12896-022-00768-0
13.    Sarkar G, K S. Extraction and characterization of alkaline protease from Streptomyces sp. GS-1 and its application as dehairing agent. Biocatal Agric Biotechnol. 2020; 25: 101590. doi:
14.    Lopez-Trujillo J, Mellado-Bosque M, Ascacio-Valdés JA, Prado-Barragán LA, Hernández-Herrera JA, Aguilera-Carbó AF. Temperature and pH Optimization for Protease Production Fermented by Yarrowia lipolytica from Agro-Industrial Waste. Fermentation. 2023; 9(9): 819. doi:10.3390/fermentation9090819
15.    Beygmoradi A, Homaei A. Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatal Agric Biotechnol. 2017; 11:131-152. doi:
16.    K.V Bhaskara Rao, Veena S, Pooja S, Shriya Y SR. Novel Actinomycetales bacterium-PV7 isolated from Kanyakumari Marine Sediments: A Prospective Source for Industrial and Pharmaceutical Enzyme ProductionNo Title. Res J Pharm Tech. 2017; 10(5): 1471-1476. Journal of Pharmacy and Technology;PID=2017-10-5-34
17.    Barzkar N, Homaei A, Hemmati R, Patel S. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles. 2018; 22(3): 335-346. doi:10.1007/s00792-018-1009-8
18.    Rutu I, Natsir H, Arfah R. Production Of Protease Enzyme From Bacteria In Hot Spring Of South Sulawesi,Bacillus licheniformis HSA3-1a. Mar Chim Acta. 2015; 16(1): 10-17.
19.    Irianto HE, Se-Kwon K, Fidel T. Advances in Food and Nutrition Research, Marine Enzymes Biotechnology: Production and Industrial Applications, Part III Application of Marine Enzymes. Vol 80.; 2017.
20.    Gurunathan R, Huang B, Ponnusamy VK, Hwang JS, Dahms HU. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Sci Rep. 2021; 11(1): 12007. doi:10.1038/s41598-021-90375-4
21.    Okpara MO. Microbial Enzymes and Their Applications in Food Industry: A Mini-Review. Adv Enzym Res. 2022; 10(01): 23-47. doi:10.4236/aer.2022.101002
22.    Hoshino T, Doi H, Uramoto GI, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci U S A. 2020;117(44):27587-27597. doi:10.1073/pnas.1919139117
23.    Yao H, Liu S, Liu T, et al. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol. 2023; 39(7): 172. doi:10.1007/s11274-023-03621-4
24.    Jørgensen BB. Sulfur Biogeochemical Cycle Of Marine Sediments S. Geochemical Perspect. 2021; 10(2): 145-146.
25.    Zhang Z, Deng Q, Wan L, Cao X, Zhou Y, Song C. Bacterial communities and enzymatic activities in sediments of long-term fish and crab aquaculture ponds. Microorganisms. 2021; 9(3): 1-12. doi:10.3390/microorganisms9030501
26.    Ziervogel K, Sweet J, Juhl AR, Passow U. Sediment Resuspension and Associated Extracellular Enzyme Activities Measured ex situ: A Mechanism for Benthic-Pelagic Coupling in the Deep Gulf of Mexico. Front Mar Sci. 2021; 8: 1-12. doi:10.3389/fmars.2021.668621
27.    Robinson PK. Enzymes: principles and biotechnological applications. Essays Biochem. 2015; 59: 1-41. doi:10.1042/BSE0590001
28.    Shu WS, Huang LN. Microbial diversity in extreme environments. Nat Rev Microbiol. 2022; 20(4): 219-235. doi:10.1038/s41579-021-00648-y
29.    Orsi WD. Ecology and evolution of seafloor and subseafloor microbial communities. Nat Rev Microbiol. 2018; 16(11): 671-683. doi:10.1038/s41579-018-0046-8
30.    Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev. 2018; 42(3): 353-375. doi:10.1093/femsre/fuy009
31.    Communities E, Factors T, Disease I, Gupta R, Singh RL. Principles and Applications of Environmental Biotechnology for a Sustainable Future.; 2017. doi:10.1007/978-981-10-1866-4
32.    Amit Sitoke, Reena Singh Chopra, Pradip Kumar G CC. Identification and Characterization of an Alkalophilic Protease from Bacillus mycoides strain isolated from Industrial Soil of Phagwara, India. Res J Pharm Tech. 2017; 10(10): 3435-3438. Journal of Pharmacy and Technology;PID=2017-10-10-35
33.    Marathe SK, Vashistht MA, Prashanth A, Parveen N, Chakraborty S, Nair SS. Isolation, partial purification, biochemical characterization and detergent compatibility of alkaline protease produced by Bacillus subtilis, Alcaligenes faecalis and Pseudomonas aeruginosa obtained from sea water samples. J Genet Eng Biotechnol. 2018; 16(1): 39-46. doi:10.1016/j.jgeb.2017.10.001
34.    K. Viswanathan LJR. Screening of Marine Actinomycetes for Fibrinolytic Enzymes. Res J Pharm Tech. 2018; 11(10): 4365-4369. Journal of Pharmacy and Technology;PID=2018-11-10-29
35.    Kaur J, Mudgal G, Chand K, et al. An exopolysaccharide-producing novel Agrobacterium pusense strain JAS1 isolated from snake plant enhances plant growth and soil water retention. Sci Rep. 2022; 12(1): 1-30. doi:10.1038/s41598-022-25225-y
36.    Lu Z, Guo W, Liu C. Isolation, identification and characterization of novel Bacillus subtilis. J Vet Med Sci. 2018; 80(3): 427-433. doi:10.1292/jvms.16-0572
37.    Vidhya C. V. Production and Optimization of Extra-cellular protease from Ganoderma sp. Res. J. Pharm. Tech. 2019; 12(4): 1832-1838. Journal of Pharmacy and Technology;PID=2019-12-4-61
38.    Indarmawan T, Mustopa AZ, Budiarto BR, Tarman K. Antibacterial Activity of Extracellular Protease Isolated From an Algicolous Fungus Xylaria psidii KT30 Against Gram-Positive Bacteria. HAYATI J. Biosci. 2016; 23(2): 73-78. doi:
39.    Lario LD, Chaud L, das Graças Almeida M, Converti A, Durães Sette L, Pessoa A. Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7. Fungal Biol. 2015; 119(11): 1129-1136. doi:
40.    Mohamed SS, Abdelhamid SA, Ali RH. Isolation and identification of marine microbial products. J. Genet Eng Biotechnol. 2021; 19(1). doi:10.1186/s43141-021-00259-3
41.    Lu P, Wang W, Zhang G, et al. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds. PLoS One. 2020; 15: 1-19. doi:10.1371/journal.pone.0240187
42.    Tagliavia M, Salamone M, Bennici C, Quatrini P, Cuttitta A. A modified culture medium for improved isolation of marine vibrios. Microbiologyopen. 2019; 8(9): 1-9. doi:10.1002/mbo3.835
43.    Pant G, Prakash A, Pavani JVP, et al. Production, optimization and partial purification of protease from Bacillus subtilis. J Taibah Univ Sci. 2015; 9(1): 50-55. doi:10.1016/j.jtusci.2014.04.010
44.    Amini AP, Kirkpatrick JD, Wang CS, et al. Multiscale profiling of protease activity in cancer. Nat Commun. 2022; 13(1). doi:10.1038/s41467-022-32988-5
45.    Sneha S, Mrunal Palsokar, Vemula Sai Jahnavi, Anwesha Sarkar KVBR. olation, Characterization and Application of Protease Enzyme from Marine Bacteria. Res J Pharm Technol. 2021; 14(8): 4236. Journal of Pharmacy and Technology;PID=2021-14-8-41
46.    Asmi N, Ahmad A, Karim H, et al. Antibacterial effect of protein and protein hydrolysates isolated from bacteria Enterobacter hormaechei associated with marine algae Sargassum sp. Rasayan J. Chem. 2020; 13(3): 1606-1611. doi:10.31788/RJC.2020.1335696
47.    Natsir H, Dali S, Sartika, Leliani, Arif AR. Enzymatic hydrolysis of collagen from yellowfin tuna bones and its potential as antibacterial agent. Rasayan J. Chem. 2021; 14(1): 594-600. doi:10.31788/RJC.2021.1415914
48.    Sugrani A, Ahmad A, Djide MN, Natsir H. Two novel antimicrobial and anticancer peptides prediction from Vibrio sp. strain ES25. J. Appl. Pharm. Sci. 2020; 10(8): 058-066. doi:10.7324/JAPS.2020.10807
49.    Mæhre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen IJ. Protein determination—method matters. Foods. 2018; 7(1). doi:10.3390/foods7010005
50.    Shruthi NBT. Isolation of Potential Extracellular Hydrolytic Enzymes producing Fungi from Western Ghats, Karnataka. Res. J. Pharm. Tech. 2020; 13(5): 2081-2086. Journal of Pharmacy and Technology;PID=2020-13-5-4
51.    Chen XL, Wang Y, Wang P, Zhang YZ. Proteases from the marine bacteria in the genus Pseudoalteromonas: diversity, characteristics, ecological roles, and application potentials. Mar Life Sci. Technol. 2020; 2(4): 309-323. doi:10.1007/s42995-020-00058-8
52.    Mushtaq H, Ganai SA, Id AJ, Ganai BA, Dar R. Molecular and functional characterization of protease from psychrotrophic Bacillus sp . HM49 in North-western Himalaya. Published online 2023: 1-24. doi:10.1371/journal.pone.0283677
53.    Mandragutti T, Dokka MK, Panchagnula B, Godi S. Molecular characterization of marine bacterial isolates of Visakhapatnam coast—efficacy in dye decolorization and bioremediation of cadmium. J Genet Eng Biotechnol. 2021; 19(1). doi:10.1186/s43141-021-00189-0
54.    Masi C, Gemechu G, Tafesse M. Identification of Alkaline Protease- Producing Bacteria From Leather Industry Effluent. Ann Microbiol. 2021; 71(24): 2-11.
55.    Urnukhsaikhan E, Bold BE, Gunbileg A, Sukhbaatar N. Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Sci Rep. Published online 2021:1-12. doi:10.1038/s41598-021-00520-2
56.    Anteneh YS, Yang Q, Brown MH. Antimicrobial Activities of Marine Sponge-Associated Bacteria. Published online 2021:1-19.
57.    Mondal H, Thomas J. Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Published online 2022.
58.    Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. Published Online 2017: 1-8. doi:10.1186/s12866-017-0936-3
59.    Vasiljeva O, Menendez E, Nguyen M, Craik CS, Michael Kavanaugh W. Monitoring protease activity in biological tissues using antibody prodrugs as sensing probes. Sci Rep. 2020; 10(1): 5894. doi:10.1038/s41598-020-62339-7
60.    Hammann P, Halby L, Arimondo PB, et al. Towards the sustainable discovery and development of new antibiotics. Nat Rev. Chem. 2021; 5. doi:10.1038/s41570-021-00313-1
61.    Aljeldah MM. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics. 2022; 11(8). doi:10.3390/antibiotics11081082
62.    Qian PY, Cheng A, Wang R, Zhang R. Marine biofilms: diversity, interactions and biofouling. Nat Rev Microbiol. 2022; 20(11): 671-684. doi:10.1038/s41579-022-00744-7
63.    Xiao S, Chen N, Chai Z, et al. Secondary Metabolites from Marine-Derived Bacillus: A Comprehensive Review of Origins, Structures, and Bioactivities. Mar Drugs. 2022; 20(9). doi:10.3390/md20090567
64.    Chimbekujwo KI, Ja’afaru MI, Adeyemo OM. Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci African. 2020; 8: e00398. doi:10.1016/j.sciaf.2020.e00398
65.    Rathakrishnan D, Gopalan AK. Isolation and characterization of halophilic isolates from Indian salterns and their screening for production of hydrolytic enzymes. Environ Challenges. 2022; 6: 100426. doi:10.1016/j.envc.2021.100426
66.    Hossain TJ. Hydrolytic Exoenzymes Produced by Bacteria Isolated and Identified From the Gastrointestinal Tract of Bombay. 2020; 11:1-13. doi:10.3389/fmicb.2020.02097
67.    Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides : Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Published online 2022.
68.    Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Arch Microbiol. 2022; 204(2): 144. doi:10.1007/s00203-022-02757-5
69.    Lew S, Glińska-Lewczuk K, Lew M. The effects of environmental parameters on the microbial activity in peat-bog lakes. PLoS One. 2019; 14(10): 1-18. doi:10.1371/journal.pone.0224441
70.    Prajapati V, Patel S, Ray S, Patel KC. Identification of Protease Enzymes Involved in Biocontrol Activity. In: Amaresan N, Patel P, Amin D, eds. Practical Handbook on Agricultural Microbiology. Springer US; 2022: 323-329. doi:10.1007/978-1-0716-1724-3_43
71.    Mohamed A, Maitig A, Alhoot MAM, Tiwari K. Isolation and Screening of Extracellular Protease Enzyme from Fungal Isolates of Soil. 2018; 12:2059-2067.
72.    Ahmed I, Turakani B, Malpani J, et al. Journal of King Saud University – Science Extracellular Protease Production, Optimization, and Partial Purification from Bacillus nakamurai PL4 and its Applications. J King Saud Univ - Sci. 2023; 35(1): 102429. doi:10.1016/j.jksus.2022.102429
73.    Masi C, Tebiso A, Kumar KVS. Heliyon Isolation and characterization of potential multiple extracellular enzyme-producing bacteria from waste dumping area in Addis Ababa. Heliyon. 2023; 9(2): e12645. doi:10.1016/j.heliyon.2022.e12645
74.    Oliynyk RT, Church GM. Efficient modification and preparation of circular DNA for expression in cell culture. Commun Biol. 2022; 5(1): 1-10. doi:10.1038/s42003-022-04363-z
75.    Lienhard A, Schäffer S. Extracting the invisible: Obtaining high quality DNA is a challenging task in small arthropods. PeerJ. 2019; 2019(4). doi:10.7717/peerj.6753
76.    Dyksma S, Bischof K, Fuchs BM, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016; 10(8): 1939-1953. doi:10.1038/ismej.2015.257
77.    Franco DC, Signori CN, Duarte RTD, Nakayama CR, Campos LS, Pellizari VH. High prevalence of gammaproteobacteria in the sediments of Admiralty bay and North Bransfield Basin, Northwestern Antarctic Peninsula. Front Microbiol. 2017; 8: 1-9. doi:10.3389/fmicb.2017.00153
78.    Zhang J, Chen M, Huang J, et al. Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS One. 2019; 14(4): 1-18. doi:10.1371/journal.pone.0215328
79.    Barnes NM, Damare SR, Shenoy BD. Bacterial and Fungal Diversity in Sediment and Water Column From the Abyssal Regions of the Indian Ocean. Front Mar Sci. 2021; 8: 1-11. doi:10.3389/fmars.2021.687860
80.    Nursyam H. Antibacterial activity of metabolites products of Vibrio alginolyticus isolated from sponge Haliclona sp. Against staphylococcus aureus. Ital. J. Food Saf. 2017; 6(1): 18-22. doi:10.4081/ijfs.2017.6237

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available