Author(s): J Jaichand1, K K Sabu, T Vaidyanatha Iyer

Email(s): sabuknair@gmail.com

DOI: 10.52711/0974-360X.2024.00446   

Address: J Jaichand1, K K Sabu1*, T Vaidyanatha Iyer2
1Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram.
2Dept. of Biotechnology, University of Kerala.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Sesbania grandiflora (Linn) is a tree known for many medicinal properties, and all parts of the tree are used in folk medicine and Ayurveda, for various conditions such as diarrhoea, dysentery, smallpox and other eruptive fevers, nasal catarrh, bronchitis and pain. Antiviral activity and cytotoxicity of hexane, ethyl acetate, acetone and methanol extracts from the leaf, bark and flower of Sesbania grandiflora were studied. The leaf, bark and flower were separately extracted by solvents; Hexane, Ethyl Acetate, Acetone, and Methanol; sequentially. The extracts were analysed for their cytotoxic concentration by the MTT method, and antiviral activity against viruses, Herpes Simplex Virus type 1 (HSV 1) and Coxsackie virus B2 (Cox B2) in Vero cells, by inhibition of CPE. The quantity of viral nucleic acid produced was monitored in relation to untreated virus controls using real-time PCR. The study found significant antiviral activity for the different plant extracts, justifying its use in traditional medicine for various syndromes of viral aetiology. Apart from a previously reported antiviral activity of the methanol extract of flowers, this study reports the presence of compounds with significant antiviral activity in the acetone extract of leaf, acetone and ethyl acetate extracts of bark and ethyl acetate extract of flower as well. The acetone extract of the leaf showed antiviral activity against both HSV 1 and Cox B2 giving protection of 50% and 90% respectively (IC50 0.073 mg/ml). The bark ethyl acetate extract gave 100% and 60% protection (IC50 0.046 mg/ml); bark acetone extract gave 90% and 100% protection (IC50 0.1 & 0.052 mg/ml) against HSV 1 and Cox B2, respectively. Among the flower extracts, ethyl acetate extract gave 100% protection against HSV 1 and gave 80% protection against Cox B2 (IC50 0.2 mg/ml). The real-time PCR assay which quantifies the inhibition of viral DNA production had an excellent correlation with CPE production. All four extracts showed significant activity against HSV type 1 and Coxsackie B2 viruses with Therapeutic Indices ranging from 1:1 to 1:4, which is very promising for drug development, as the above therapeutic index is in the crude extract.


Cite this article:
J Jaichand1, K K Sabu, T Vaidyanatha Iyer. Cytotoxicity Studies and Antiviral Activity of Sesbania grandiflora. Research Journal of Pharmacy and Technology. 2024; 17(6):2839-5. doi: 10.52711/0974-360X.2024.00446

Cite(Electronic):
J Jaichand1, K K Sabu, T Vaidyanatha Iyer. Cytotoxicity Studies and Antiviral Activity of Sesbania grandiflora. Research Journal of Pharmacy and Technology. 2024; 17(6):2839-5. doi: 10.52711/0974-360X.2024.00446   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-65


REFERENCES:
1.    Somnath Kar et al. Ethnomedicinal uses of some legumes in Tripura. India Pleione. 2019; 13(2): 258–268. doi:10.26679/Pleione.13.2.2019.258-268.
2.    James A. Duke. Handbook of Energy Crops. Purdue University, Center for New Crops and Plants Products. 1983.
3.    Shamali Dange et al. Phytochemical and Pharmacological Review of Sesbania grandiflora. Asian Journal of Pharmacy and Technology. 2022; 12(1): 20-4. doi:10.5958/0975-4385.2019.00020.7.
4.    Avinash B. Thalkari et al. Sesbenia grandiflora: An all-round tree. Res. J. Pharmacognosy and Phytochem. 2019; 11(3): 114-122. doi:10.5958/0975-4385.2019.00020.7.
5.    Vinay NS et al. Anti-inflammatory activity of methanol and ethyl acetate fractions of Sesbania grandiflora roots in rats. Research Journal of Pharmacy and Technology. 2022; 15(11): 5115-9. doi:10.52711/0974-360X.2022.00860.
6.    A Saravana Kumar, NM Ramaswamy. Anti-Inflammatory activity of Sesbania Grandiflora (Fabaceae). Research J. Pharm. and Tech. 2009; 2(1): 214-215.
7.    S. Gupta et al. Evaluation of Antiosteoporotic potential of Sesbania grandiflora Linn. aqueous fraction in Ovariectomised Rats. Research J. Pharm. and Tech. 2020; 13(4): 1804-1812. doi: 10.5958/0974-360X.2020.00325.X
8.    A. Saravana Kumar et al. Antibacterial Activity of Methanolic Extract of Sesbania Grandiflora (Fabaceae). Research J. Pharm. and Tech. 2008; 1(1): 59-60.
9.    Sripradha, Lakshmi. T. In vitro Anti- Arthritic activity of Sesbania grandiflora Ethyl acetate extract. Research J. Pharm. and Tech. 2015; 8(11): 1509-1511. doi: 10.5958/0974-360X.2015.00269.3
10.    Himgauri V. Naik et al. Study of Antiulcer Activity of Leaves of Sesbania grandiflora Linn. (Fabaceae). Research Journal of Pharmacognosy and Phytochemistry. 2012; 4(6): 322-325.
11.    Vaishali J. Mahadik et al. Cognition Enhancing potential of Sesbania grandiflora fruit extract in Scopolamine induced Amnesia in mice. Research J. Pharm. and Tech. 2020; 13(11): 5057-5062. doi: 10.5958/0974-360X.2020.00886.0
12.    Harborne JB. Phytochemical Methods. 3rd Edition, Chapman and Hall, Londres. 1998.
13.    Evans WC. Trease and Evans, Pharmacognosy. 16th Edition. Saunders Elsevier. 2009.
14.    Veeresh P Veerapur et al. Pharmacognostic and Preliminary Phytochemical Screening of Sesbania grandiflora root. Res. J. Pharmacognosy and Phytochem. 2018; 10(4): 285-290. doi: 10.5958/0975-4385.2018.00046.8
15.    Grist NR et al. Diagnostic methods in clinical virology, 3rd edn. Oxford, Blackwell Scientific Publications. 1979.
16.    Julia Serkedjieva, Stefka Ivancheva. Antiherpes virus activity of extracts from the medicinal plant Geranium sanguineum L., Journal of Ethnopharmacology.1998; 64(1): 59-68. doi: 10.1016/S0378-8741(98)00095-6
17.    Malik, FZA et al. Antiviral and virucidal activities of Duabanga grandiflora leaf extract against Pseudorabies virus in vitro. BMC Complement Altern Med. 2016 16, 139. doi: 10.1186/s12906-016-1120-2
18.    Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal of Immunological Methods. 1983; 65(1), 55-63. doi: 10.1016/0022-1759(83)90303-4
19.    Morgan DML. Tetrazolium (MTT) Assay for Cellular Viability and Activity. In: Morgan DML (eds) Polyamine Protocols. Methods in Molecular Biology, vol 79. Humana Press. 1998.
20.    Chakrabarti R et al. Vitamin A as an enzyme that catalyzes the reduction of MTT to formazan by vitamin C. J Cell Biochem. 2000; Sep 18; 80(1): 133-138. doi: 10.1002/1097-4644(20010101)80:1<133:AID-JCB120>3.0.CO;2-T
21.    Lennette E H. Laboratory Diagnosis Of Viral Infections.  1985.
22.    Meyer JJM et al. Inhibition of herpes simplex virus type 1 by aqueous extracts from shoots of Helichrysum aureonitens (Asteraceae). Journal of Ethnopharmacology, 1996; 52(1): 41-43. doi: 10.1016/0378-8741(96)01387-6
23.    Muller, Patrick Y et al. The determination and interpretation of the therapeutic index in drug development. Nature Reviews Drug Discovery. 2012; 11(10): 751–761. doi: 10.1038/nrd3801
24.    Luebcke, Emily, et al. Isolation and characterization of a chimpanzee alphaherpesvirus. The Journal of General Virology. 2006; 87(1). doi: 10.1099/vir.0.81606-0
25.    Davis P M, and R J Phillpotts. Susceptibility of the VERO line of African green monkey kidney cells to human enteroviruses. The Journal of Hygiene. 1974; 72(1): 23-30. doi: 10.1017/S0022172400023160
26.    Fields et al. Fields Virology. New York: Raven Press. 1985.
27.    Tariq N, Kyriakopoulos C. Group B Coxsackie Virus. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2022.
28.    Murray PR et al. Medical Microbiology (5th ed.). Elsevier Mosby. 2005.
29.    Enright AM, Prober CG. Herpesviridae infections in newborns: varicella zoster virus, herpes simplex virus, and cytomegalovirus. Pediatr Clin North Am. 2004; Aug; 51(4): 889-908. doi: 10.1016/j.pcl.2004.03.005
30.    Mandell et al. Principles and Practice of Infectious Diseases, Ninth Edition, Elsevier. 2020.
31.    Hassan STS et al. Herpes simplex virus infection: an overview of the problem, pharmacologic therapy and dietary measures. Ceska Slov. Farm. 2017; 66: 95–102.
32.    Treml Jakub et al. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses. 2020; 12: 154. doi: 10.3390/v12020154
33.    Saravana Kumar Arthanaria et al. Evaluation of antiviral and cytotoxic activities of methanolic extract of S. grandiflora (Fabaceae) flowers, Asian Pacific Journal of Tropical Biomedicine. 2012; 2(2): S855-S858. doi: 10.1016/S2221-1691(12)60323-2
34.    Roa-Linares VC et al. Anti-Herpetic, Anti-Dengue and Antineoplastic Activities of Simple and Heterocycle-Fused Derivatives of Terpenyl-1,4-Naphthoquinone and 1,4-Anthraquinone. Molecules. 2019; 24; 1279. doi: 10.3390/molecules24071279
35.    Caruso F et al. Computational studies reveal mechanism by which quinone derivatives can inhibit SARS-CoV-2. Study of embelin and two therapeutic compounds of interest, methylprednisolone and dexamethasone. J Infect Public Health. 2020, 13(12):1868-1877. doi: 10.1016/j.jiph.2020.09.015
36.    Matlakala Christina Mathabe et al. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana, Journal of Ethnopharmacology. 2008; 116(1): 194-197. https://doi.org/10.1016/j.jep.2007.11.017.
37.    Stránská R et al. Application of real-time PCR for determination of antiviral drug susceptibility of herpes simplex virus. Antimicrob Agents Chemother. 2002, Sep; 46(9): 2943-7. doi: 10.1128/aac.46.9.2943-2947.2002
38.    Kessler HH et al. Detection of Herpes simplex virus DNA by real-time PCR. J Clin Microbiol. 2000; Jul; 38(7): 2638-42. doi: 10.1128/jcm.38.7.2638-2642.2000
39.    Günther S et al. Application of real-time PCR for testing antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro. Antiviral Res. 2004 Sep; 63(3): 209-15. doi: 10.1016/j.antiviral.2004.05.001
40.    Nijhuis M et al. Rapid and sensitive routine detection of all members of the genus enterovirus in different clinical specimens by real-time PCR. J Clin Microbiol. 2002 Oct; 40(10): 3666-70. doi: 10.1128/jcm.40.10.3666-3670.2002
41.    Amit Roy et al. Phytochemical Screening and Antioxidant Activity of Sesbania grandiflora Leaves Extracts. Asian J. Res. Pharm. Sci. 2014; 4(1): Jan.-Mar.; 16-21.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available