Author(s): Sumarlin, Syamsidar Gaffar, Adriyana Edward

Email(s): sumarlin@borneo.ac.id

DOI: 10.52711/0974-360X.2024.00439   

Address: Sumarlin1*, Syamsidar Gaffar2, Adriyana Edward1
1Department of Aquatic Technology, Fisheries and Marine Science Faculty, Universitas Borneo Tarakan, Tarakan 77115, Kalimantan Utara, Indonesia.
2Department of Aquatic Resources Management, Fisheries and Marine Science Faculty, Universitas Borneo Tarakan, Tarakan 77115, Kalimantan Utara, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
In the face of escalating drug resistance amongst microorganisms, the imperative to discover novel sources of antimicrobials is growing. To this end, this investigation delves into the potential of sponge symbiotic bacteria as an alternative source. The aim is to identify and assess the antimicrobial and biocatalytic capacities of symbiotic bacteria located in Xestospongia sp., indigenous to the waters of Derawan Island, Indonesia. Leveraging ½ strength R-2A agar medium, we succeeded in isolating seven symbiotic bacterial strains. The antimicrobial prowess of these isolates was subsequently put to the test against Staphylococcus aureus and Escherichia coli. Five of the seven isolates demonstrated a significant capacity to inhibit bacterial growth, with the Xp-05 isolate being the most effective. Molecular identification revealed that these symbiotic bacteria were part of the Bacillus genus, more specifically Bacillus cereus (Xp-03, Xp-05, and Xp-06) and Bacillus xiamenensis (Xp-01 and Xp-07). Notably, all these isolates were capable of synthesizing protease, amylase, lipase, and cellulase enzymes.. The findings from this research highlight the significant potential of symbiotic bacterial isolates from Xestospongia sponges in Derawan Island's waters for medical and biotechnological applications.


Cite this article:
Sumarlin, Syamsidar Gaffar, Adriyana Edward. Exploring the Hidden Biotechnological Treasure of Bacterial Symbionts in Xestospongia sp. from Derawan Island: A Study on Antimicrobial and Enzyme-Producing Bacteria. Research Journal of Pharmacy and Technology. 2024; 17(6):2795-3. doi: 10.52711/0974-360X.2024.00439

Cite(Electronic):
Sumarlin, Syamsidar Gaffar, Adriyana Edward. Exploring the Hidden Biotechnological Treasure of Bacterial Symbionts in Xestospongia sp. from Derawan Island: A Study on Antimicrobial and Enzyme-Producing Bacteria. Research Journal of Pharmacy and Technology. 2024; 17(6):2795-3. doi: 10.52711/0974-360X.2024.00439   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-58


REFERENCES:
1.    Li P, Lu H, Zhang Y, et al. The natural products discovered in marine sponge-associated microorganisms: structures, activities, and mining strategy. Front Mar Sci. 2023; 10. doi:10.3389/fmars.2023.1191858
2.    M.S A, L.S C, Ashawat P. Marine- Most Diverse Sources Promising as Potential to Drug Therapy. Res. J. Pharm. Technol. 2012; 5(10): 1253-1259.
3.    Muralidharan A, Chandrasekhar R, Rao JV. Marine Microbial Metabolites as Drug Candidates for Alzheimer’s Disease. Res. J. Pharm. Technol. 2019; 12(12): 6081. doi:10.5958/0974-360X.2019.01056.4
4.    Ravi A, Raj MG, Arunachalam S, Sathiavelu M. Marine environment: A potential source for anticancer drugs. Res. J. Pharm. Technol. 2017; 10(5): 1543. doi: 10.5958/0974-360X.2017.00272.4
5.    Elgoud Said AA, Mahmoud BK, Attia EZ, Abdelmohsen UR, Fouad MA. Bioactive natural products from marine sponges belonging to family Hymedesmiidae. RSC Adv. 2021; 11(27): 16179-16191. doi:10.1039/D1RA00228G
6.    de Oliveira BFR, Freitas-Silva J, Canellas ALB, Costa WF, Laport MS. Time for a Change! A Spotlight on Many Neglected Facets of Sponge Microbial Biotechnology. Curr Pharm Biotechnol. 2023; 24(4): 471-485. doi:10.2174/1389201023666220516103715
7.    Ruocco N, Esposito R, Zagami G, et al. Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis. Sci Rep. 2021; 11. doi:10.1038/s41598-021-00713-9
8.    Mandal S. Marine Microorganisms: New Frontier in Antimicrobial Therapeutics. In: Recent Trends and The Future of Antimicrobial Agents - Part I. Bentham Science Publishers; 2023: 36-60. doi:10.2174/9789815079609123010005
9.    Sharmalkumar M, Arunagirinathan N, Anand D, et al. In-vitro study on antimicrobial and anticancer activities of marine sponge Clathria frondifera associated bacteria. Res. J. Pharm. Technol. 2020; 13(8): 3753. doi:10.5958/0974-360X.2020.00664.2
10.    Setyowati EP, Purwantiningsih P, Yulianny Erawan FM, Rahmanti S, Rifka Hanum N, Moeksa Devi NC. Cytotoxic and Antimicrobial Activities of Ethyl Acetate Extract from Fungus Trichoderma reesei strain JCM 2267, Aspergillus flavus strain MC- 10-L, Penicillium sp, and Aspergillus fumigatus Associated with Marine Sponge Stylissa flabelliformis. Res. J. Pharm Technol. 2021; 14(10): 5126-5132. doi:10.52711/0974-360X.2021.00893
11.    Chelvan Y, Chelvan T, Pushpam AC, Karthik R, Ramalingam K, Vanitha MC. Extraction and Purification of Antimicrobial Compounds from Marine Actinobacteria. Res. J. Pharm Technol. 2016; 9(4): 381. doi:10.5958/0974-360X.2016.00068.8
12.    Nagavekar N, Dubey K, Sharma A, Singhal RS. Supercritical Extraction of Valued Components From Animals Parts. In: Innovative Food Processing Technologies. Elsevier; 2021: 597-619. doi:10.1016/B978-0-08-100596-5.22673-5
13.    Cahn JKB, Piel J. Opening up the Single‐Cell Toolbox for Microbial Natural Products Research. Angew Chemie Int Ed. 2021; 60(34): 18412-18428. doi:10.1002/anie.201900532
14.    Abirami G, C R, M S, M J, J M. Isolation and Screening of Marine Bacteria for Industrially important Extracellular Enzymes. Int. J. Chem. Tech. Res. 2019; 12(05): 217-226. doi:10.20902/IJCTR.2019.120524
15.    Ashwini K, Kumar S. Partial-purification of Alpha-Amylase from Marine Streptomyces gancidicus -ASD_KT852565. Res J Pharm Technol. 2016; 9(6): 731. doi:10.5958/0974-360X.2016.00139.6
16.    S S, Palsokar M, Sai Jahnavi V, Sarkar A, Rao KVB. Isolation, Characterization and Application of Protease Enzyme from Marine Bacteria. Res. J. Pharm. Technol. Published online August 6; 2021: 4236-4240. doi:10.52711/0974-360X.2021.00735
17.    Birolli WG, Lima RN, Porto ALM. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front Microbiol. 2019; 10. doi:10.3389/fmicb.2019.01453
18.    Asagabaldan MA, Ayuningrum D, Kristiana R, Sabdono A, Radjasa OK, Trianto A. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen. IOP Conf Ser Earth Environ Sci. 2017; 55: 012019. doi: 10.1088/1755-1315/55/1/012019
19.    Nofiani R, Weisberg AJ, Tsunoda T, et al. Antibacterial Potential of Secondary Metabolites from Indonesian Marine Bacterial Symbionts. Int. J. Microbiol. 2020; 2020: 1-11. doi:10.1155/2020/8898631
20.    Bibi F, Naseer MI, Azhar EI. Assessing the diversity of bacterial communities from marine sponges and their bioactive compounds. Saudi J. Biol Sci. 2021; 28(5): 2747-2754. doi:10.1016/j.sjbs.2021.03.042
21.    Mansour O, Salamma R, Abbas L. Screening of antibacterial activity in vitro of Cyclamen hederifolium tubers extracts. Res. J. Pharm. Technol. 2016; 9(11): 1837. doi:10.5958/0974-360X.2016.00374.7
22.    Mansour O, Darwish M, Ghenwaismail, Ali E, Ali A. Screening of Antibacterial Activity In vitro of Styrax officinalis L. Covers of Berries Extracts. Res. J. Pharm. Technol. 2016; 9(3): 209. doi:10.5958/0974-360X.2016.00037.8
23.    Bibi F, Yasir M, Al-Sofyani A, Naseer MI, Azhar EI. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp. EA348. Saudi J. Biol Sci. 2020; 27(4): 1139-1147. doi:10.1016/j.sjbs.2020.02.002
24.    Bibi F, Strobel GA, Naseer MI, Yasir M, Khalaf Al-Ghamdi AA, Azhar EI. Microbial Flora Associated with the Halophyte–Salsola imbricate and Its Biotechnical Potential. Front Microbiol. 2018; 9:1-12. doi:10.3389/fmicb.2018.00065
25.    Ahmad B, Nigar S, Sadaf Ali Shah S, et al. Isolation and Identification of Cellulose Degrading Bacteria from Municipal Waste and Their Screening for Potential Antimicrobial Activity. World Appl Sci. J. 2013; 27(11): 1420-1426. doi:10.5829/idosi.wasj.2013.27.11.81162
26.    Maharsiwi W, Astuti RI, Meriyandini A, Wahyudi AT. Screening and Characterization of Sponge-associated Bacteria from Seribu Island, Indonesia Producing Cellulase and Laccase Enzymes. Biodiversitas J. Biol Divers. 2020; 21(3). doi:10.13057/biodiv/d210317
27.    Viswanathan K, Rebecca LJ. Screening of Amylase and Cellulase Enzymes from Marine Actinomycetes. Res. J. Pharm. Technol. 2019; 12(8): 3787. doi:10.5958/0974-360X.2019.00648.6
28.    BioSoft H. DNA Sequence Assembler v4. Published online 2013. www.DnaBaser.com
29.    Yoon SH, Ha SM, Kwon S, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst Evol Microbiol. 2017; 67(5): 1613-1617. doi:10.1099/ijsem.0.001755
30.    Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Battistuzzi FU, ed. Mol Biol Evol. 2021; 38(7): 3022-3027. doi:10.1093/molbev/msab120
31.    Earny VA, Kamath V, Muralidharan A, K E V, Khera K. Marine Microbial Metabolites: A new wave of drugs for Combating Antimicrobial Resistance. Res J Pharm Technol. Published online 2021; April 29: 2348-2352. doi:10.52711/0974-360X.2021.00414
32.    Karthik L, Li Z. Marine Enzymes from Microbial Symbionts of Sponges and Corals. In: Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer Netherlands; 2019: 527-542. doi:10.1007/978-94-024-1612-1_18
33.    Cita YP, Suhermanto A, Radjasa OK, Sudharmono P. Antibacterial activity of marine bacteria isolated from sponge Xestospongia testudinaria from Sorong, Papua. Asian Pac J Trop Biomed. 2017; 7(5): 450-454. doi:10.1016/j.apjtb.2017.01.024
34.    Cheng TH, Ismail N, Kamaruding N, Saidin J, Danish-Daniel M. Industrial enzymes-producing marine bacteria from marine resources. Biotechnol Reports. 2020; 27: 1-9. doi:10.1016/j.btre.2020.e00482
35.    Kai M. Diversity and Distribution of Volatile Secondary Metabolites Throughout Bacillus subtilis Isolates. Front Microbiol. 2020; 11. doi:10.3389/fmicb.2020.00559
36.    Paik HD, Lee NK, Lee KHL, Hwang YI, Pan JGP. Identification and Partial Characterization of Cerein BS229, a Bacteriocin Produced by Bacillus cereus BS229. J. Microbiol Biotechnol. 2000; 10(2): 195-200.
37.    Indira M, Venkateswarulu TC, Chakravarthy K, Reddy AR, Prabhakar KV. Isolation and Characterization of Bacteriocin Producing Lactic Acid Bacteria from Diary Effluent. Res J Pharm Technol. 2015; 8(11): 1560. doi:10.5958/0974-360X.2015.00278.4
38.    Yilmaz M, Soran H, Beyatli Y. Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol Res. 2006; 161(2): 127-131. doi:10.1016/j.micres.2005.07.001
39.    Mohan G, Thipparamalai Thangappanpillai AK, Ramasamy B. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago. Biotechnol Reports. 2016; 11: 44-52. doi:10.1016/j.btre.2016.06.001
40.    Latorre JD, Hernandez-Velasco X, Wolfenden RE, et al. Evaluation and Selection of Bacillus Species Based on Enzyme Production, Antimicrobial Activity, and Biofilm Synthesis as Direct-Fed Microbial Candidates for Poultry. Front Vet Sci. 2016; 3. doi:10.3389/fvets.2016.00095
41.    Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem. 2018; 77: 494-506. doi:10.1016/j.bioorg.2018.02.014
42.    Yang S, Wang Y, Ren F, Li Z, Dong Q. Applying enzyme treatments in Bacillus cereus biofilm removal. LWT. 2023; 180:114667. doi:10.1016/j.lwt.2023.114667
43.    Ullah N, Rehman MU, Sarwar A, et al. Purification, Characterization, and Application of Alkaline Protease Enzyme from a Locally Isolated Bacillus cereus Strain. Fermentation. 2022; 8(11): 628. doi:10.3390/fermentation8110628
44.    Rakaz MA, Hussien MO, Ibrahim HM. Isolation, Extraction, Purification, and Molecular Characterization for Thermostable α-Amylase from Locally Isolated Bacillus Species in Sudan. Lorigan G, ed. Biochem Res Int. 2021; 2021: 1-8. doi:10.1155/2021/6670380
45.    Abada EA, Masrahi YS, Al-Abboud M, Alnashiri HM, El-Gayar KE. Bioethanol Production with Cellulase Enzyme from Bacillus cereus Isolated from Sesame Seed Residue from the Jazan Region. BioResources. 2018; 13(2). doi:10.15376/biores.13.2.3832-3845
46.    Vaithilingam M, Chandrasekaran SD, Gupta S, et al. Extraction of Nattokinase Enzyme from Bacillus cereus Isolated from Rust. Natl Acad Sci Lett. 2016; 39(4): 263-267. doi:10.1007/s40009-016-0476-7
47.    Wang SL, Chao CH, Liang TW, Chen CC. Purification and Characterization of Protease and Chitinase from Bacillus cereus TKU006 and Conversion of Marine Wastes by These Enzymes. Mar Biotechnol. 2009; 11(3): 334-344. doi:10.1007/s10126-008-9149-y
48.    Lyu Y, Ye L, Xu J, Yang X, Chen W, Yu H. Recent research progress with phospholipase C from Bacillus cereus. Biotechnol Lett. 2016; 38(1): 23-31. doi:10.1007/s10529-015-1962-6
49.    Zhang RX, Wu ZW, Cui HY, et al. Production of surfactant-stable keratinase from Bacillus cereus YQ15 and its application as detergent additive. BMC Biotechnol. 2022; 22(1): 26. doi:10.1186/s12896-022-00757-3
50.    Murthy S, Bali G, Sarangi K. Effect of lead on metallothionein concentration in lead-resistant bacteria Bacillus cereus isolated from industrial effluent. AFRICAN J Biotechnol. 2011; 10(71): 15966-15972. doi:10.5897/AJB11.1645
51.    Todorova K, Velkova Z, Stoytcheva M, Kirova G, Kostadinova S, Gochev V. Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions. Biotechnol Biotechnol Equip. 2019; 33(1): 730-738. doi:10.1080/13102818.2019.1610066
52.    Matilda CS, Mannully ST, Viditha RP, Shanthi C. Protein profiling of metal‐resistant Bacillus cereus VITSH1. J Appl Microbiol. 2019; 127(1): 121-133. doi:10.1111/jam.14293
53.    Syed S, Chinthala P. Heavy Metal Detoxification by Different Bacillus Species Isolated from Solar Salterns. Scientifica (Cairo). 2015; 2015: 1-8. doi:10.1155/2015/319760
54.    Wu M, Liang J, Tang J, et al. Decontamination of multiple heavy metals-containing effluents through microbial biotechnology. J. Hazard Mater. 2017; 337: 189-197. doi:10.1016/j.jhazmat.2017.05.006
55.    Sinha A, Pant KK, Khare SK. Studies on mercury bioremediation by alginate immobilized mercury tolerant Bacillus cereus cells. Int Biodeterior Biodegradation. 2012; 71: 1-8. doi:10.1016/j.ibiod.2011.12.014
56.    Amna, Xia Y, Farooq MA, et al. Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiol Biochem. 2020;151:640-649. doi:10.1016/j.plaphy.2020.04.016
57.    Patel P. Plant Growth and a Tool for Biological Control of Phytopathogens. Res J Plant Pathol. 2022; 5(4:057).
58.    Huang-Lin E, Sánchez-León E, Amils R, Abrusci C. Potential Applications of an Exopolysaccharide Produced by Bacillus xiamenensis RT6 Isolated from an Acidic Environment. Polymers (Basel). 2022; 14(18): 3918. doi:10.3390/polym14183918
59.    Hasan R, Aktar N, Kabir SMT, et al. Pectinolytic Bacterial Consortia Reduce Jute Retting Period and Improve Fibre Quality. Sci Rep. 2020; 10(1): 5174. doi:10.1038/s41598-020-61898-z
60.    Shanthi V, Roymon MG. Isolation, Identification and Partial Optimization of Novel Xylanolytic Bacterial Isolates from Bhilai-Durg Region, Chhattisgarh, India. Iran J. Biotechnol. 2018; 16(3): e1333. doi:10.15171/ijb.1333
61.    Saberianpour S, Abkhooie L, Elyasifar B, Dilmaghani A. Screening and Optimization of Protease Enzyme Produced by Strains of Alkalihalobacillus Sp. and Bacillus Sp. Curr Biotechnol. 2021; 10(1): 40-45. doi:10.2174/2211550109999201202123222
62.    Padhan K, Patra RK, Sethi D, et al. Isolation, characterization and identification of cellulose-degrading bacteria for composting of agro-wastes. Biomass Convers Biorefinery. Published online 2023; March 20. doi:10.1007/s13399-023-04087-y
63.    Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H, Panda CR. Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. J. Environ Manage. 2019; 247: 121-134. doi:10.1016/j.jenvman.2019.06.073
64.    Wagh MS, Osborne WJ, Sivarajan S. Toxicity assessment of lead, nickel and cadmium on zebra fish augmented with Bacillus xiamenensis VITMSJ3: An insight on the defense mechanism against oxidative stress due to heavy metals. Food Chem Toxicol. 2023; 177: 113830. doi:10.1016/j.fct.2023.113830
65.    Wagh MS, Osborne WJ, Sivarajan S. Bacillus xiamenensis and earthworm Eisenia fetida in bio removal of lead, nickel and cadmium: A combined bioremediation approach. Appl Soil Ecol. 2022; 176: 104459. doi:10.1016/j.apsoil.2022.104459
66.    Younas H, Nazir A, Latif Z, Thies JE, Shafiq M, Bareen F e. Biosorption potential and molecular characterization of metal-resistant autochthonous microbes from tannery solid waste. Arch Microbiol. 2022; 204(10): 651. doi:10.1007/s00203-022-03238-5


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available