Author(s): Jola Rahmahani, Fedik Abdul Rantam, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto

Email(s): jola_rahmahani@yahoo.co.id

DOI: 10.52711/0974-360X.2024.00434   

Address: Jola Rahmahani1*, Fedik Abdul Rantam1, Tetri Regilya Fatimah2, Anastasia Hanny Irawan2, Naimah Putri3, Eryk Hendrianto4
1Laboratory of Virology and Immunology, Division of Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
2Bachelor of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
3Doctoral Degree of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia.
4Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Newcastle disease is a viral disease that occurs annually in poultry farms in Indonesia. It is caused by infection of avian paramyxovirus serotype 1. It infects many types of birds, including pigeons, ostriches, waterfowl, chickens and parrots. Controls such as vaccination, did not protect poultry from infection with Newcastle disease virus (NDV). It should be noted that the protective efficacy of seed vaccines is affected by epitopes that produce different levels of protective efficacy in vaccination regimens. Subunit vaccines might be the best choice for preventing NDV infection. Pigeon (Columba livia Domestica) samples were collected at a live bird market in Surabaya. Collected samples showed clinical signs such as respiratory distress, limp, anorexia, and subclinical bowel/diarrhea. A molecular approach was taken to obtain the nucleotide sequences of the samples. Molecular analysis was performed to obtain B-cell epitopes that can safely induce the immune system. This sequence was used for T lymphocyte cell epitope analysis using EIDB. The obtained epitopes were analyzed with Vaxijen, Allertop and ToxinPred and confirmed to be safe to use. Peptides were obtained from her NDV-infected pigeons identified as potential seed vaccine candidates. Some peptides such as GSWVYIHLLSTFTLL, PYMVVRLRRSLNTCKL, NWQLSLRPYMVVRLR, RASLANLYPAAFSVF were obtained from Pigeon/Surabaya/2019/03, while Pigeon/Surabaya/2019/01 produced some peptides, but the required characteristics did not meet. These epitopes may be used as subunit vaccines to eradicate Newcastle disease virus.


Cite this article:
Jola Rahmahani, Fedik Abdul Rantam, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto. T lymphocyte cell epitopes prediction of newcastle disease virus isolated from pigeon (Columba livia domestica). Research Journal of Pharmacy and Technology. 2024; 17(6):2769-2. doi: 10.52711/0974-360X.2024.00434

Cite(Electronic):
Jola Rahmahani, Fedik Abdul Rantam, Tetri Regilya Fatimah, Anastasia Hanny Irawan, Naimah Putri, Eryk Hendrianto. T lymphocyte cell epitopes prediction of newcastle disease virus isolated from pigeon (Columba livia domestica). Research Journal of Pharmacy and Technology. 2024; 17(6):2769-2. doi: 10.52711/0974-360X.2024.00434   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-53


REFERENCES:
1.    Sun M, Dong J, Wang Z, Li L, Yuan J, Jiao P, Hu Q, Ren T. Complete Genome Sequence of a Newly Emerging Newcastle Disease Virus Isolated in China. Genome Announcements. 2013; 9; 1(3): 3–4.doi: 10.1128/genomeA.00169-13
2.    Dharmayanti NLPI, Hartawan R, Dyah AH, Risa I. Phylogenetic Analysis of Genotype VII of New Castle Disease Virus in Indonesia. African Journal of Microbiology Research. 2014; 26; 8(13): 1368–74. doi: 10.5897/AJMR2014.6601
3.    Alexander DJ, Aldous EW, Fuller CM. The Long View: A Selective Review of 40 Years of Newcastle Disease Research. Avian Pathology. 2012; 27; 41(4), 329-335. doi: 10.1080/03079457.2012.697991.
4.    Badawi MM, Alla AAF, Alam SS, Mohamed WA, Osman DANE, Ali SAAA, Ahmed EME, Adam AA, Abdullah RO, Salih MA. Immunoinformatics Predication and in Silico Modeling of Epitope-Based Peptide Vaccine Against Virulent Newcastle Disease Viruses. American Journal of Infectious Diseases and Microbiology. 2016; June 20; 4(3): 61–71. doi: DOI: 10.12691/ajidm-4-3-3
5.    Krishnamurthy S, Samal SK. Nucleotide Sequences of the Trailer, Nucleocapsid Protein Gene and Intergenic Regions of Newcastle Disease Virus Strain Beaudette C and Completion of the Entire Genome Sequence. J Gen Virol. 2017; 1; 10(79): 2419–24.doi: 10.1099/0022-1317-79-10-2419.
6.    Putri DD, Handharyani E, Soejoedono RD, Setiyono A, Mayasari NLPI, Poetri ON. Pathotypic Characterization of Newcastle Disease Virus Isolated from Vaccinated Chicken in West Java, Indonesia. Veterinary World. 2017; 22; 10(4): 438–44. doi: 10.14202/vetworld.2017.438-444
7.    Hussein MA, Khammas EJ. Isolation and Identification of Avian Newcastle Disease in Poultry from Karbala City, Iraq. Research Journal of Pharmacy and Technology. 2019; May 1; 12(5): 2229. Doi: 10.5958/0974-360X.2019.00371.8
8.    Dortmans JCFM, Rottier PJM, Koch G, Peeters BPH. The Viral Replication Complex Is Associated with the Virulence of Newcastle Disease Virus. J Virol. 2010; 1; 84(19): 10113–20. doi: https://doi.org/10.1128/JVI.00097-10
9.    Kim SH, Wanasen N, Paldurai A, Xiao S. Collins PL, Samal SK. Newcastle Disease Virus Fusion Protein Is the Major Contributor to Protective Immunity of Genotype-Matched Vaccine. PloS One. 2013; 28; 8(8): 1–10. doi: 10.1371/journal.pone.0074022  
10.    Smith EC, Popa A, Chang A, Masante C, Dutch RE. Viral entry mechanisms: the increasing diversity of paramyxovirus entry. J. Author Manuscript. 2009; 27; 276(24): 7217–7227. doi:  10.1111/j.1742-4658.2009.07401.x
11.    Gogoi P, Ganar K, Kumar S. Avian Paramyxovirus : A Brief Review. Transboundary and Emerging Diseases. 2015; 28; 64(1): 53–67. doi: 10.1111/tbed.12355
12.    OIE. 2012. OIE Manual of Diagnostic Test and Vaccines for Terrestrial Animals in Newcastle Diseases (Infection with Newcastle Diseases Virus).
13.    Rantam, F. A. 2008. Virologi Molekuler. A lecture material. Faculty of Veterinary Medicine, Universitas Airlangga. Surabaya
14.    Ansori ANM, Kharisma VD. Characterization of Newcastle Disease Virus in Southeast Asia and East Asia: Fusion Protein Gene. EKSAKTA: Jurnal Ilmu-Ilmu MIPA. 2020; 2; 1(1): 14–20. doi: 10.20885/EKSAKTA.vol1.iss1.art3
15.    Dimitrov I, Bangov IP, Doytchinova IA, Flower D. AllerTOP v.2 - A Server for in Silico Prediction of Allergens. Journal of Molecular Modeling. 2014; 31; 20(6): 2278-2284. doi: 10.1007/s00894-014-2278-5
16.    Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GPS. In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS ONE. 2013; 13; 8(9): e73957. doi: 10.1371/journal.pone.0073957
17.    MacLachlan NJ, Dubovi EJ. Fenner’s Veterinary Virology. 2016; Vol. 110. Elsevier.
18.    Pedersen JC, Senne DA, Woolcock PR, Kinde H, King DJ, Wise MG, Panigrahy B, Seal BS. Phylogenetic Relationships among Virulent Newcastle Disease Virus Isolates from the 2002-2003 Outbreak in California and Other Recent Outbreaks in North America. J. Clin Microbiol. 2004; 1; 42(5):2329-34.doi: 10.1128/JCM.42.5.2329-2334.2004
19.    Lindh E, Ek-Kommonen C, Väänänen VM, Alasaari J, Vaheri A, Vapalahti O, Huovilainen A. Molecular Epidemiology of Outbreak-Associated and Wild-Waterfowl- Derived Newcastle Disease Virus Strains in Finland , Including a Novel  Class I Genotype. J. Clin Mirobiol. 2012; 12; 50(11):3664–73.doi: 10.1128/JCM.01427-12
20.    Nath B, Kumar S. Emerging Variant of Genotype XIII Newcastle Disease Virus from Northeast India. Acta Tropica. 2017; 29; 172: 64–69. doi: 10.1016/j.actatropica.2017.04.018
21.    Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, Bibi T, Khan TA, Yaqub T, Setiyaningsih S, Afonso CL. Identification of New Sub-Genotypes of Virulent Newcastle Disease Virus with Potential Panzootic Features. Infection, Genetics and Evolution. 2015; 1; 29: 216–29.doi: 10.1016/j.meegid.2014.10.032
22.    Mazumder AC, Khatun S, Nooruzzaman M, Chowdhury EH, Das PM, Islam MR. Isolation and Identification of Newcastle Disease Viruses from Field Outbreaks in Chickens and Pigeons. The Bangladesh Veterinarian. 2012; 30; 29: 41–48. doi: 10.3329/bvet.v29i2.14341
23.    Ujvári D, Wehmann E, Kaleta EF, Werner O, Savić C, Nagy E, Czifra G, Lomnizci B. Phylogenetic Analysis Reveals Extensive Evolution of Avian Paramyxovirus Type 1 Strains of Pigeons (Columba Livia) and Suggests Multiple Species Transmission. Virus Research. 2003; 1; 96 (1–2): 63–73.doi: 10.1016/s0168-1702(03)00173-4
24.    Meulemans G, Van Den Berg TP, Decaesstecker M, Boschmans M. Evolution of Pigeon Newcastle Disease Virus Strains. Avian Pathol. 2002; 21; 31(5):515-9. Doi: 10.1080/0307945021000005897
25.    Berhanu A, Ideris A, Omar AR, Bejo MH. Molecular Characterization of Partial Fusion Gene and C-Terminus Extension Length of Haemagglutinin-Neuraminidase Gene of Recently Isolated Newcastle Disease Virus Isolates in Malaysia. Virol J. 2010; 8; 7(183):1–10. Doi: 10.1186/1743-422X-7-183
26.    Hoque H, Islam R, Ghosh S, Rahman MM, Jewel NA, Miah MA. Implementation of in silico Methods to Predict Common Epitopes for Vaccine Development Against Chikungunya and Mayaro Viruses. Heliyon, 2021; 2; 7. doi: 10.1016/j.heliyon.2021.e06396
27.    Dodovski A, Cvetkovikj I, Krstevski K, Naletoski I, Savic V. Characterization and Epidemiology of Pigeon Paramyxovirus Type-1 Viruses (PPMV-1) Isolated in Macedonia. Avian Disease. 2017; January 9; 61(2): 146-152. doi:10.1637/11517-101816-Reg.1
28.    Mansour SMG, ElBakrey RM, Mohamed FF, Hamouda EE, Abdallah MS, Elbestawy AR, Ismail MM, Abdien HMF, Eid AAM. Avian Paramyxovirus Type 1 in Egypt: Epidemiology, Evolutionary Perspective, and Vaccine Approach. Front Vet Sci. 2021; 15; 8:647462. doi: 10.3389/fvets.2021.647462
29.    Zhan T, He D, Lu X, Liao T, Wang W, Chen Q, Liu X, Gu M, Wang X, Hu S, Liu X. Biological Characterization and Evolutionary Dynamics of Pigeon Paramyxovirus Type 1 in China. Front Vet Sci. 2021; Oct 13; 8:721102. doi: 10.3389/fvets.2021.721102
30.    Cross G. aramyxovirus-1 infection (Newcastle disease) of pigeons. 1995; April 1; 4(2): 92-95. doi: 10.1016/S1055-937X(05)80044-1.
31.    Guo H, Liu X, Xu Y, Han Z, Shao Y, Kong X, Liu S. A comparative study of pigeons and chickens experimentally infected with PPMV-1 to determine antigenic relationships between PPMV-1 and NDV strains. Vet Microbiol. 2014; Jan 10;168(1):88-97. doi: 10.1016/j.vetmic.2013.11.002
32.    Tahir Ul Qamar M, Shahid F, Aslam S, Ashfaq UA, Aslam S, Fatima I, Fareed MM, Zohaib A, Chen LL. Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infect Dis Poverty. 2020; 16; 9(1):132. doi: 10.1186/s40249-020-00752-w.
33.    Johansen ALS, Vujovic M, Borch A, Hadrup SR, Marcatili P. T cell Epitope Prediction and Its Application to Immunotherapy. Front. Immunol, 2021; September 15; 12.doi: 10.3389/fimmu.2021.712488






Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available