Author(s): Rofiatun Solekha, Ni N T Puspaningsih, Edy S W Utami, Dini Ermavitalini, Filliana Andalucya, Putut R Purnama, Hery Purnobasuki

Email(s): hery-p@fst.unair.ac.id , rofiatunsolekha2@gmail.com

DOI: 10.52711/0974-360X.2024.00386   

Address: Rofiatun Solekha1,4*, Ni N T Puspaningsih3, Edy S W Utami2, Dini Ermavitalini2, Filliana Andalucya4, Putut R Purnama5, Hery Purnobasuki2*
1Doctoral Program of Mathematics and Natural Science, Faculty of Science and Technology, Airlangga University, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Surabaya 60115, East Java, Indonesia.
2Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Surabaya 60115, East Java, Indonesia.
3Department of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya, Jl. Dr. Ir. H. Soekarno, Mulyorejo, Surabaya 60115, East Java, Indonesia.
4Department of Biology, Faculty of Science, Technology and Education, Universitas Muhammadiyah Lamongan, East Java, Indonesia.
5Bioinformatics and Computational Biology Program, Graduate School, Chulalongkorn University, 254 Phaya Thai Rd, Bangkok, 10330, Thailand.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Citronella grass (Cymbopogon nardus) is an essential oil-producing plant. The essential oils consist of geraniol and citroneal whose production is affected by plant health. The production of citronella grass decreases (harvest loss) due to red spot disease caused by Curvulaia andropogonis infection which also affects the bioactive composition of secondary metabolites. Defense signal responses are also generated using plant defense pathways which result in compounds used for counterattacking plant invasions. The purpose of this study was to determine the secondary metabolites of C. nardus attacked by C. andropogonis. This research used HPLC to analysis citronellol and geraniol C. nardus with normal, wound and infected treatment. The Gas Chromatography-Mass Spectrometry (GCMS) method was used to detect metabolites profiles in normal treatment, injury, and infection, and then analyzed based on metabolite groups and metabolic pathways. The result of this study indicated that the citronellol in normal treatment sample was higher, namely 102.003mg/L compared to the wound treatment, which was 100.120mg/L and the infected treatment, which was 89.356mg/L. Likewise for geraniol in the normal treatment of 20.065mg/L, which is greater than the wound treatment, which was 19.245 mg/L and the infected, which was 15.765mg/L. There were 12 types of metabolites based on chemical grouping including alkaloids, carboxylic acids, fatty acids, flavonoids, nucleic acids, phenolics, terpenoids, alcohols, aldehydes, amino acids, heterocyclic compounds, and carbohydrates. The highest metabolites were found in carboxylic acid. Metabolic pathways resulted carboxylic acids which came from 2-Oxocaboxylic acid metabolism, and phenolics came from the biosynthesis of secondary metabolites, which were highest in carbohydrate metabolism. In conclusion, almost all metabolites and metabolic pathways increase in the infection treatment which was significant with the results of citronellol and geranioldecreased so that the overall content of bioactive secondary metabolites decreased.


Cite this article:
Rofiatun Solekha, Ni N T Puspaningsih, Edy S W Utami, Dini Ermavitalini, Filliana Andalucya, Putut R Purnama, Hery Purnobasuki. Identification of Bioactive Secondary Metabolites in Citronella Grass Leaves (Cymbopogon nardus L.) against Curvularia andropogonis. Research Journal of Pharmacy and Technology. 2024; 17(6):2469-5. doi: 10.52711/0974-360X.2024.00386

Cite(Electronic):
Rofiatun Solekha, Ni N T Puspaningsih, Edy S W Utami, Dini Ermavitalini, Filliana Andalucya, Putut R Purnama, Hery Purnobasuki. Identification of Bioactive Secondary Metabolites in Citronella Grass Leaves (Cymbopogon nardus L.) against Curvularia andropogonis. Research Journal of Pharmacy and Technology. 2024; 17(6):2469-5. doi: 10.52711/0974-360X.2024.00386   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-5


REFERENCES:
1.    Suganda T, Wulandari DY. Curvularia sp. Jamur Patogen Baru Penyebab Penyakit Bercak Daun pada Tanaman Sawi. Agrikultura. 2019; 29(3): 119. doi:10.24198/agrikultura.v29i3.22716
2.    Beneti SC, Rosset E, Corazza ML, Frizzo CD, Di Luccio M, Oliveira JV. Fractionation of citronella (Cymbopogon winterianus) essential oil and concentrated orange oil phase by batch vacuum distillation. J Food Eng. 2011; 102(4): 348-354. doi:10.1016/j.jfoodeng.2010.09.011
3.    Vidhyasekaran P. PAMP Signaling in Plant Innate Immunity. In; 2014: 17-161. doi:10.1007/978-94-007-7426-1_2
4.    Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013; 4. doi:10.3389/fpls.2013.00082
5.    Chen XL, Xie X, Wu L, et al. Proteomic Analysis of Ubiquitinated Proteins in Rice (Oryza sativa) After Treatment With Pathogen-Associated Molecular Pattern (PAMP) Elicitors. Front Plant Sci. 2018; 9. doi:10.3389/fpls.2018.01064
6.    Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013; 4. doi:10.3389/fpls.2013.00082
7.    Dobson G, Shepherd T, Verrall SR, et al. A Metabolomics Study of Cultivated Potato (Solanum tuberosum) Groups Andigena, Phureja, Stenotomum, and Tuberosum Using Gas Chromatography−Mass Spectrometry. J Agric Food Chem. 2010; 58(2): 1214-1223. doi:10.1021/jf903104b
8.    Hammerschmidt R, Dann EK. The Role of Phytoalexins in Plant Protection. In: 2007: 175-190. doi:10.1002/9780470515679.ch12
9.    Balmer D, de Papajewski DV, Planchamp C, Glauser G, Mauch-Mani B. Induced resistance in maize is based on organ-specific defence responses. The Plant Journal. 2013; 74(2): 213-225. doi:10.1111/tpj.12114
10.    Aliferis KA, Jabaji S. Metabolomics – A robust bioanalytical approach for the discovery of the modes-of-action of pesticides: A review. Pestic Biochem Physiol. 2011; 100(2): 105-117. doi:10.1016/j.pestbp.2011.03.004
11.    Abdul Rahim. Structure and functional properties of resistant starch from butyrylated arenga starches. African Journal of Food Science. 2012; 6(12). doi:10.5897/ajfs12.013
12.    Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Plant. 2008; 132(2): 199-208. doi:10.1111/j.1399-3054.2007.01025.x
13.    Allwood JW, Ellis DI, Goodacre R. Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol Plant. 2007:071124124159003-??? doi:10.1111/j.1399-3054.2007.01001.x
14.    Istikorini Y, Wulandari AS, Krisna W. UJI Kesehatan Benih Kenanga Ylang-Ylang. Hutan Tropika. 2022; 15(2): 51-61. doi:10.36873/jht.v15i2.2159
15.    Solekha R, Susanto FA, Joko T, Nuringtyas TR, Purwestri YA. Phenylalanine ammonia lyase (PAL) contributes to the resistance of black rice against Xanthomonas oryzae pv. oryzae. Journal of Plant Pathology. 2020; 102(2): 359-365. doi:10.1007/s42161-019-00426-z
16.    Yelampalli S. Reddy, Kumar JVS, Mallu UR. Development and Validation of HPLC Method for determination of Decitabine impurity profile in Decitabine for Injection 50mg/vial. Res J Pharm Technol. 2019; 12(4): 1885. doi:10.5958/0974-360X.2019.00311.1
17.    Balabhaskar R, Vijayalakshmi K. Identification of Secondary Metabolites from the Ethanol extract of the leaves of Bauhinia tomentosa by GC-MS Analysis. Res J Pharm Technol. Published online May 26, 2021: 2335-2341. doi:10.52711/0974-360X.2021.00482
18.    Bharadwaj N, Chaturvedi A. Qualitative and quantitative determination of secondary metabolites of Lagerstroemia parviflora roxb leaves. Res J Pharm Technol. 2020; 13(10): 4740. doi:10.5958/0974-360X.2020.00835.5
19.    Molina J, Nikolic D, Jeevarathanam JR, et al. Living with a giant, flowering parasite: metabolic differences between Tetrastigma loheri Gagnep. (Vitaceae) shoots uninfected and infected with Rafflesia (Rafflesiaceae) and potential applications for propagation. Planta. 2022; 255(1): 4. doi:10.1007/s00425-021-03787-x
20.    Chen W, Viljoen AM. Geraniol — A review of a commercially important fragrance material. South African Journal of Botany. 2010; 76(4): 643-651. doi:10.1016/j.sajb.2010.05.008
21.    Iyengar M, Chandrashekar K. Pharmacognostic Study of various species of Cymbopogon of South canara, India. Res J Pharm Technol. 2019; 12(8): 3626. doi:10.5958/0974-360X.2019.00618.8
22.    Sharma R, Rao R, Kumar S, Mahant S, Khatkar S. Therapeutic Potential of Citronella Essential Oil: A Review. Curr Drug Discov Technol. 2019; 16(4): 330-339. doi:10.2174/1570163815666180718095041
23.    Nakahara K, Alzoreky NS, Yoshihashi T, Nguyen HTT, Trakoontivakorn G. Chemical Composition and Antifungal Activity of Essential Oil from Cymbopogon nardus (Citronella Grass). Japan Agricultural Research Quarterly: JARQ. 2013; 37(4): 249-252. doi:10.6090/jarq.37.249
24.    Naqqash ZA Al, Al-Bazaz HK. GC-Mass and Phytochemical Investigation of Cymbopogon citratus. Res J Pharm Technol. 2019; 12(1): 67. doi:10.5958/0974-360X.2019.00013.1
25.    do Prado Apparecido R, Carlos EF, Lião LM, Vieira LGE, Alcantara GB. NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics. 2017; 13(2). doi:10.1007/s11306-017-1163-5
26.    de Oliveira P, de Almeida N, Conda-Sheridan M, et al. Ozonolysis of neem oil: preparation and characterization of potent antibacterial agents against multidrug resistant bacterial strains. RSC Adv. 2017; 7(55): 34356-34365. doi:10.1039/C7RA00574A
27.    Papaefthimiou D, Papanikolaou A, Falara V, Givanoudi S, Kostas S, Kanellis AK. Genus Cistus: A model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties. Front Chem. 2014; 2(JUN). doi:10.3389/fchem.2014.00035
28.    He Y, Han J, Liu R, et al. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Hortic Res. 2018; 5(1). doi:10.1038/s41438-018-0051-0
29.    Coppola M, Diretto G, Digilio MC, et al. Transcriptome and metabolome reprogramming in tomato plants by trichoderma harzianum straint22 primes and enhances defense responses against aphids. Front Physiol. 2019; 10(JUN). doi:10.3389/fphys.2019.00745
30.    Chen F, Ma R, Chen XL. Advances of metabolomics in fungal pathogen–plant interactions. Metabolites. 2019; 9(8). doi:10.3390/metabo9080169
31.    Grata E, Guillarme D, Glauser G, et al. Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. J Chromatogr A. 2009; 1216(30): 5660-5668. doi:10.1016/j.chroma.2009.05.069
32.    Gadhave R V., Kuchekar BS. Design, synthesis, characterization and antioxidant activity of novel benzothiazole and coumarin based 6-(3, 5-dimethylpyrazol-1-yl) pyridazin-3-one derivatives. Res J Pharm Technol. 2020; 13(12): 5661-5667. doi:10.5958/0974-360X.2020.00986.5
33.    Solekha R, Ayu P, Setiyowati I, et al. Phytochemical Screening of Ethanol Extract on Stems, Leaves, and Roots of Citronella Grass (Cymbopogon nardus L.). Vol 5.; 2022.
34.    Ruskin SR, Ajina S. Qualitative Phytochemical Screening and In-vitro Anthelmintic Activity of Adhatoda vasica (Acanthaceae). Res J Pharm Technol. 2017; 10(2): 414. doi:10.5958/0974-360X.2017.00083.X
35.    Ayfan AKH, Muslim RF, Noori NS. Preparation and Characterization of Novel disubstituted 1, 3-Oxazepine-tetra-one from Schiff bases reaction with 3-methylfuran-2, 5-dione and 3-Phenyldihydrofuran-2, 5-dione. Res J Pharm Technol. 2019; 12(3): 1008. doi:10.5958/0974-360X.2019.00167.7
36.    Gupta AK, Ganjewala D. Purification and Characterization of the 1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase From Cymbopogon Flexuosus Leaves. Res J Pharm Technol. 2015; 8(3): 320. doi:10.5958/0974-360X.2015.00053.0
37.    Kour P, Tiwari A. Medicinal Values of Secondary Metabolites of Withania Somnifera. Res J Pharm Technol. 2018; 11(7): 3167. doi:10.5958/0974-360X.2018.00582.6
38.    Upadhyay PK, Dixit P, Garabadu D. Pharmacological Activities of Phytoconstituents and Essential oil obtained from Cymbopogon citratus Linn. Res J Pharm Technol. Published online September 14, 2021: 4555-4560. doi:10.52711/0974-360X.2021.00792
39.    Ditto Sharmin D, Revathi K, Mahendra J, Anandhi D, Arun M, Vigila JJ. Antibacterial efficacy of Lemon Grass Oil (Cymbopogon citratus) on the type of bacteria and its count in Dental Aerosols. Res J Pharm Technol. Published online 2022; September 28: 4024-4028. doi:10.52711/0974-360X.2022.00674

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available