Author(s): Nur Khoma Fatmawati, Eva Rachmi, Elfina G. Sadono


DOI: 10.52711/0974-360X.2024.00425   

Address: Nur Khoma Fatmawati1, Eva Rachmi2*, Elfina G. Sadono3
1Laboratory of Ophthalmology, Medical Faculty, Universitas Mulawarman, Indonesia
2Laboratory of Anatomy, Medical Faculty, Universitas Mulawarman, Indonesia
3Department of Ophthalmology, Medical Faculty, Universitas Brawijaya, Indonesia
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024

Melanoma is a type of cancer derived from melanocytes, and the incidence and mortality are predicted to increase. Melanoma therapy faces various challenges, especially primary and secondary resistance, highlighting the need for alternative chemotherapy that is suitable for each case characteristic. Eleutherine americana Merr. has been found to have a potential cytotoxic effect on melanoma cells. However, its target of action was not yet known. This study aimed to address this knowledge gap by exploring the ethanol extract of Eleutherine americana Mer (EEEA)'s ability to inhibit NF-?B and cyclin D1 expression and attempted to predict its target of action. Three different concentrations of EEEA were tested on the A375.S2 melanoma cell line. NF-?B and cyclin D1 expression was observed semiquantitatively through immune histochemical staining with primary antibody anti-NF-?B/p65 or anti-cyclin D1. The RNA helicase DDX5/p68 which was predicted to be the target of EEEA was tested in silico. EEEA significantly decreased NF-?B/p65 and cyclin D1 expression at concentrations of 25 and 50µg/ml. Twelve EEEA secondary metabolites were predicted to have strong energy-binding with ATP/ADP-binding pocket and RNA-binding pocket of DDX5/p68. The EEEA’s secondary metabolites with the strongest binding energy in ATP/ADP-binding pocket DDX5/p68 were eleuthoside B, eleutherinoside A, and eleutherinoside D, while in RNA-binding pocket were eleutherinoside-E, eleutherinoside-D, eleutherinoside-B, and eleutherinoside-C. Therefore, EEEA potentially inhibits the progression of melanoma, especially if overexpressing cyclin D1, NF-?B, and DDX5/p68.

Cite this article:
Nur Khoma Fatmawati, Eva Rachmi, Elfina G. Sadono. The ethanol extract of Eleutherine americana Merr. inhibited NF-κB and cyclin D1 expression in melanoma cell line A375.S2. Research Journal of Pharmacy and Technology. 2024; 17(6):2710-8. doi: 10.52711/0974-360X.2024.00425

Nur Khoma Fatmawati, Eva Rachmi, Elfina G. Sadono. The ethanol extract of Eleutherine americana Merr. inhibited NF-κB and cyclin D1 expression in melanoma cell line A375.S2. Research Journal of Pharmacy and Technology. 2024; 17(6):2710-8. doi: 10.52711/0974-360X.2024.00425   Available on:

1.    Ojaswi G, Divya N, Digna P. Melanoma and its drug targets. Res J Pharm Technol. 2016; 9(5): 562-570. doi:10.5958/0974-360X.2016.00107.4
2.    Arnold M, Singh D, Laversanne M, et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology. 2022; 158(5): 495-503. doi:10.1001/jamadermatol.2022.0160
3.    Mihajlovic M, Vlajkovic S, Jovanovic P, Stefanovic V. Primary mucosal melanomas: A comprehensive review. Int. J. Clin. Exp. Pathol. 2012;5(8):739-753.
4.    Ma Y, Xia R, Ma X, Judson-Torres RL, Zeng H. Mucosal Melanoma: Pathological Evolution, Pathway Dependency and Targeted Therapy. Front Oncol. 2021; 11(July): 1-16. doi:10.3389/fonc.2021.702287
5.    Pollack LA, Li J, Berkowitz Z, et al. Melanoma survival in the United States, 1992 to 2005. J Am Acad Dermatol. 2011; 65(5 SUPPL. 1):S78.e1-S78.e10. doi:10.1016/j.jaad.2011.05.030
6.    Bolick NL, Geller AC. Epidemiology of Melanoma. Hematol Oncol Clin North Am. 2021; 35(1): 57-72. doi:10.1016/j.hoc.2020.08.011
7.    Pathak; S, Zito. PM. Clinical Guidelines for the Staging, Diagnosis, and Management of Cutaneous Malignant Melanoma. [Updated 2023 Mar 7]. In: StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing; 2023 Jan-; 2023.
8.    Atkins MB, Curiel-Lewandrowski C, Fisher DE, et al. The state of Melanoma: Emergent challenges and opportunities. Clin Cancer Res. 2021; 27(10): 2678-2697. doi:10.1158/1078-0432.CCR-20-4092
9.    De Cicco P, Ercolano G, Tenore GC, Ianaro A. Olive leaf extract inhibits metastatic melanoma spread through suppression of epithelial to mesenchymal transition. Phyther Res. 2022; 36(10): 4002-4013. doi:10.1002/ptr.7587
10.    Gam DH, Park JH, Kim JH, Beak DH, Kim JW. Effects of allium sativum stem extract on growth and migration in melanoma cells through inhibition of VEGF, mmp-2, and mmp-9 gene expression. Molecules. 2022;27(1). doi:10.3390/molecules27010021
11.    Yu S, Sheu HM, Lee CH. Solanum incanum extract (SR-T100) induces melanoma cell apoptosis and inhibits established lung metastasis. Oncotarget. 2017; 8(61): 103509-103517. doi:10.18632/oncotarget.21508
12.    Pandey S, Chatterjee SJ, Ovadje P, Mousa M, Hamm C. The efficacy of dandelion root extract in inducing apoptosis in drug-resistant human melanoma cells. Evidence-based Complement Altern Med. 2011; 2011. doi:10.1155/2011/129045
13.    Jin S, Kim KC, Kim JS, Jang K Il, Hyun TK. Anti-melanoma activities and phytochemical compositions of Sorbus commixta fruit extracts. Plants. 2020; 9(9): 1-9. doi:10.3390/plants9091076
14.    Tabeshpour J, Shakiban D, Qobadi A, Aghazadeh E, Yousefsani BS. Cytotoxic Effects of Ethanolic Extract of Polypodium Vulgare on Human Malignant Melanoma Cell Line. Asian Pac J. Cancer Prev. 2023; 24(1): 275-281. doi:10.31557/APJCP.2023.24.1.275
15.    Kou L, Zhu Z, Redington C, et al. Potential use of kiwifruit extract for treatment of melanoma. Med Oncol. 2021; 38(3): 1-7. doi:10.1007/s12032-021-01465-2
16.    Bożek J, Tomala J, Wójcik S, et al. Effects of Piptoporus betulinus Ethanolic Extract on the Proliferation and Viability of Melanoma Cells and Models of Their Cell Membranes. Int. J. Mol. Sci. 2022; 23(22). doi:10.3390/ijms232213907
17.    Cattaneo L, Cicconi R, Mignogna G, et al. Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells. PLoS One. 2015; 10(7): 1-18. doi:10.1371/journal.pone.0132439
18.    Kamarudin AA, Sayuti NH, Saad N, Razak NAA, Esa NM. Eleutherine bulbosa (Mill.) urb. bulb: Review of the pharmacological activities and its prospects for application. Int. J. Mol. Sci. 2021; 22(13): doi:10.3390/ijms22136747
19.    Khotimah S, Kalim H, Rohman MS, Soeharto S. Anti-atherosclerotic activity of eleutherine americana merr. As the peroxisome proliferated-activated receptor γ agonist: In silico study. Res. J. Pharm. Technol. 2020; 13(3): 1423-1428. doi:10.5958/0974-360X.2020.00260.7
20.    Yani S, Soeharto S, Sumarno, Kalim H. The effect of eleutherine americana merr. Extract on expression changes of MMP-8 and type 1 collagen in periodontitis rat models. Res. J. Pharm. Technol. 2020; 13(5): 2407-2412. doi:10.5958/0974-360X.2020.00432.1
21.    Hasanah N, Mintaroem K, Fitri LE, Noorhamdani. Ethyl acetate fraction of tiwai onion (Eleutherine palmifolia (L), Merr) increases the cytotoxicity of NK-92 cells against HeLa CCL-2 cells. Res. J. Pharm. Technol. 2020; 13(6): 2854-2858. doi:10.5958/0974-360X.2020.00508.9
22.    Mutiah R, Minggarwati TS, Kristanti RA, Susanti E. Compound Identification and Anticancer Activity of Ethyl Acetate Fraction from Bawang Sabrang (Eleutherine palmifolia (L.) Merr.) on HeLa Cervical Cancer Cell Line. Indones J. Cancer Chemoprevention. 2019; 10(3): 131. doi:10.14499/indonesianjcanchemoprev10iss3pp131-139
23.    Lestari D, Kartika R, Marliana E. Antioxidant and anticancer activity of Eleutherine bulbosa (Mill.) Urb on leukemia cells L1210. J Phys. Conf Ser. 2019; 1277(1). doi:10.1088/1742-6596/1277/1/012022
24.    Lubis A, Ichwan M, Mustofa, Satria D. Anticancer Activity of Eleutherine bulbosa (Mill.) Urb. Extract on WiDr Cell Line In Vitro. Adv Heal Sci Research. 2018; 9(PHICo 2017): 167-171. doi:10.2991/phico-17.2018.25
25.    Li X, Ohtsuki T, Koyano T, Kowithayakorn T, Ishibashi M. New Wnt/β-catenin signaling inhibitors isolated from Eleutherine palmifolia. Chem - An Asian J. 2009; 4(4): 540-547. doi:10.1002/asia.200800354
26.    Thamrin H. Efek Ekstrak Bawang Tiwai (Eleutherine Americana) Terhdap Proliferasi Kultur Sel Melanoma Maligna. Universitas Brawijaya; 2014.
27.    Sazonova E V., Chesnokov MS, Zhivotovsky B, Kopeina GS. Drug toxicity assessment: cell proliferation versus cell death. Cell Death Discov. 2022; 8(1): 1-11. doi:10.1038/s41420-022-01207-x
28.    Ledoux AC, Perkins ND. NF-κB and the cell cycle. Biochem Soc Trans. 2014; 42(1): 76-81. doi:10.1042/BST20130156
29.    Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014; 2(9): 823-830. doi:10.1158/2326-6066.CIR-14-0112.NF-
30.    Dai L, Jin X, Liu Z. Prognostic and clinicopathological significance of GPRC5A in various cancers: A systematic review and meta-analysis. PLoS One. 2021; 16(3): 1-21. doi:10.1371/journal.pone.0249040
31.    Ruslin, Leorita M, Arifa N, et al. Potential anticancer role of leonurine and its derivatives. Res. J. Pharm. Technol. 2020; 13(6): 2825-2832. doi:10.5958/0974-360X.2020.00503.X
32.    Shankari B, Rambabu M, Jayanthi S. Identification and designing inhibitors for hepatocellular carcinoma by targeting claudin-10. Res. J. Pharm. Technol. 2018; 11(8): 3529-3533. doi:10.5958/0974-360X.2018.00652.2
33.    Dallakyan S, Olson A. Chapter 19. Small-molecule library screening by docking with PyRx. In: Methods in Molecular Biology. 2015; Vol 1263.: 243-250. doi:10.1007/978-1-4939-2269-7
34.    Hilbert M, Karow AR, Klostermeier D. The mechanism of ATP-dependent RNA unwinding by DEAD box proteins. Biol Chem. 2009; 390(12): 1237-1250. doi:10.1515/BC.2009.135
35.    Hashemi V, Masjedi A, Hazhir-karzar B, et al. The role of DEAD-box RNA helicase p68 (DDX5) in the development and treatment of breast cancer. J. Cell Physiol. 2019; 234(5): 5478-5487. doi:10.1002/jcp.26912
36.    Rachmi E, Purnomo BB, Endharti AT, Fitri LE. In silico prediction of anti-apoptotic bcl-2 proteins modulation by afzelin in mda-mb-231 breast cancer cell. Res. J. Pharm. Technol. 2020; 13(2): 905-910. doi:10.5958/0974-360X.2020.00171.7
37.    Kharisma VD, Kharisma SD, Ansori ANM, et al. Antiretroviral effect simulation from black tea (Camellia sinensis) via dual inhibitors mechanism in HIV-1 and its social perspective in Indonesia. Res. J. Pharm. Technol. 2021; 14(1): 455-460. doi:10.5958/0974-360X.2021.00083.4
38.    Stierand K, Rarey M. PoseView -- molecular interaction patterns at a glance. J Cheminform. 2010; 2(S1): 20146. doi:10.1186/1758-2946-2-s1-p50
39.    Abagyan R, Totrov M, Kuznetsov D. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994; 15(5): 488-506. doi:10.1002/jcc.540150503
40.    Bairoch A. The cellosaurus, a cell-line knowledge resource. J Biomol Tech. 2018; 29(2): 25-38. doi:10.7171/jbt.18-2902-002
41.    Singh K, Rambabu M, Jayanthi S. Designing BRAF specific inhibitors against melanoma. Res. J. Pharm. Technol. 2018; 11(8): 3494-3498. doi:10.5958/0974-360X.2018.00646.7
42.    Madonna G, Ullman CD, Gentilcore G, Palmieri G, Ascierto PA. NF-κB as potential target in the treatment of melanoma. J. Transl Med. 2012; 10(1): 53. doi:10.1186/1479-5876-10-53
43.    Montagnani V, Maresca L, Apollo A, et al. E3 ubiquitin ligase PARK2, an inhibitor of melanoma cell growth, is repressed by the oncogenic ERK1/2-ELK1 transcriptional axis. J Biol Chem. 2020; 295(47): 16058-16071. doi:10.1074/jbc.RA120.014615
44.    Xia L, Tan S, Zhou Y, et al. Role of the NFκB-signaling pathway in cancer. Onco Targets Ther. 2018; 11: 2063-2073. doi:10.2147/OTT.S161109
45.    McNulty SE, Tohidian NB, Meyskens FL. RelA, p50, and inhibitor of kappa B alpha are elevated in human metastatic melanoma cells and respond aberrantly to ultraviolet light B. Pigment Cell Res. 2001; 14(6): 456-465. doi:10.1034/j.1600-0749.2001.140606.x
46.    Liu J, Kumar KS, Yu D, et al. Oncogenic BRAF regulates β-Trcp expression and NF-κB activity in human melanoma cells. Oncogene. 2007; 26(13): 1954-1958.
47.    González-Ruiz L, González-Moles MÁ, González-Ruiz I, Ruiz-Avila I, Ayén Á, Ramos-García P. An update on the implications of cyclin D1 in melanomas. Pigment Cell Melanoma Res. 2020; 33(6): 788-805. doi:10.1111/pcmr.12874
48.    Sirotkin A V., Alexa R, Kišová G, et al. MicroRNAs control transcription factor NF-kB (p65) expression in human ovarian cells. Funct Integr Genomics. 2015; 15(3): 271-275. doi:10.1007/s10142-014-0413-0
49.    Khare V, Tabassum S, Chatterjee U, Chatterjee S, Ghosh MK. RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: Implications in colon cancer. J. Exp Clin Cancer Res. 2019; 38(1): 1-19. doi:10.1186/s13046-019-1304-y
50.    Giridharan S, Srinivasan M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm Res. 2018; 11: 407-419. doi:10.2147/JIR.S140188
51.    Wang D, Huang J, Hu Z. RNA helicase DDX5 regulates MicroRNA expression and contributes to cytoskeletal reorganization in basal breast cancer cells. Mol Cell Proteomics. 2012; 11(2): 1-12. doi:10.1074/mcp.M111.011932
52.    Gharibi Z, Shahbazi B, Gouklani H, Nassira H, Rezaei Z, Ahmadi K. Computational screening of FDA-approved drugs to identify potential TgDHFR, TgPRS, and TgCDPK1 proteins inhibitors against Toxoplasma gondii. Sci Rep. 2023; 13(1): 1-18. doi:10.1038/s41598-023-32388-9
53.    Liang H, Zhao L, Gong X, Hu M, Wang H. Virtual screening FDA approved drugs against multiple targets of SARS-CoV-2. Clin Transl Sci. 2021; 14(3): 1123-1132. doi:10.1111/cts.13007
54.    Terefe EM, Ghosh A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights. 2022; 16. doi:10.1177/11779322221125605
55.    Dai TY, Cao L, Yang ZC, et al. P68 RNA helicase as a molecular target for cancer therapy. J Exp Clin Cancer Res. 2014; 33(1): 1-8. doi:10.1186/s13046-014-0064-y
56.    Chandra R. miRNA: Biogenesis, functions, gene targets, prediction tools, and databases – A review. Res J Pharm Technol. 2017; 10(6): 1834-1839. doi:10.5958/0974-360X.2017.00322.5
57.    Wu S, Nie S, Wang J. MiR-206 inhibits reorganization of the cytoskeleton in melanoma cells by targeting DDX5. Trop J Pharm Res. 2021; 20(11): 2279-2285. doi:10.4314/tjpr.v20i11.7
58.    Keklikoglou I, Hosaka K, Bender C, et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion, and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene. 2015; 34(37): 4867-4878. doi:10.1038/onc.2014.408

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

56th percentile
Powered by  Scopus

SCImago Journal & Country Rank

Recent Articles


Not Available