Author(s): Nikulin A.V., Gabaeva R.S., Martynov L.Yu., Shatalov D.O., Kovaleva T.Yu., Dorovskikh E.A., Trashchenkova D. A.

Email(s): kovaleva_t_yu@staff.sechenov.ru

DOI: 10.52711/0974-360X.2024.00414   

Address: Nikulin A.V.1, Gabaeva R.S.1, Martynov L.Yu.1, Shatalov D.O.1, Kovaleva T.Yu.*1,2, Dorovskikh E.A.2, Trashchenkova D. A.2
1MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies), 86, Vernadsky Avenue, 119571, Moscow, Russian Federation.
2Sechenov First Moscow State Medical University, 8, bldg. 2, Trubetskaya St., 119991, Moscow, Russian Federation.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
The work presents a new spectrophotometric method of determining iodine inorganic forms in the kelp thalli (Laminariae thalli). A glycerin-stabilized starch solution was used as a coloring reagent. The developed method is characterized by ease of implementation, high selectivity and sensitivity (at the ng/ml level) as opposed to available methods in the literature. High stability of the analytical signal, linearity in the range from 60 to 720 ng/ml, accuracy, repeatability, and intermediate precision were established by research of metrological characteristics. The detection limit and quantification limit in solutions obtained after sample preparation were 20 and 60ng/ml. The proposed methodology may be recommended for research as well as in regulatory documentation for crude herbal drug (CHD).


Cite this article:
Nikulin A.V., Gabaeva R.S., Martynov L.Yu., Shatalov D.O., Kovaleva T.Yu., Dorovskikh E.A., Trashchenkova D. A.. Development of Inorganic Iodine Quantitative Determination in the kelp Thalli (Laminariae thalli) by Spectrophotometric Method for Solving Pharmacognostic Issues. Research Journal of Pharmacy and Technology. 2024; 17(6):2644-0. doi: 10.52711/0974-360X.2024.00414

Cite(Electronic):
Nikulin A.V., Gabaeva R.S., Martynov L.Yu., Shatalov D.O., Kovaleva T.Yu., Dorovskikh E.A., Trashchenkova D. A.. Development of Inorganic Iodine Quantitative Determination in the kelp Thalli (Laminariae thalli) by Spectrophotometric Method for Solving Pharmacognostic Issues. Research Journal of Pharmacy and Technology. 2024; 17(6):2644-0. doi: 10.52711/0974-360X.2024.00414   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-33


REFERENCES:
1.    Zimmermann М.В. The role of iodine in human growth and development. Seminars in Cell and Development Biology. 2011; 22(6): 645-652. doi:10.1016/j.semcdb.2011.07.009
2.    MoskalevYu.I. Mineral exchange. 1985 Moscow, Russian Federation Medicine: 288 [in Russian].
3.    Avtsyn A.P., Zhavoronkov A.A., Rish M.A., Strochkova L.S. Human microelementoses: etiology, classification, organopathology. Medicine. 1991; 496.
4.    Vitamins and minerals: a complete encyclopedia / Comp. Emelyanova T. P. S.-Petersburg: ZAO Ves, 2000. 368 p. [in Russian].
5.    Romaris-Hortas V., Bermejo-Barrera P., Moreda-Piñeiro J., Moreda-Piñeiro A. Speciation of the bio-available iodine and bromine forms in adible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma – mass spectrometry. Anal. Chim. Acta. 2012; 745: 24-32. doi: 10.1016/j.aca.2012.07.035
6.    Hess S. Y., Pearce E. N. Iodine: physiology, dietary sources and requirements. Encyclopedia of Human Nutrition (Fourth Edition). 2023: 273-281.
7.    Portulano C., Paroder-Belenitsky M., Carrasco N.The Na+/I- symporter (NIS): mechanism and medical impact. Endocr. Rev. 2014. 35(1): 106-149. doi: 10.1210/er.2012-1036
8.    Anandkumar S., Chacko J., Theertha C. K, Usha M. Thyroid Disorder: An Overview. Res. J. Pharmacology and Pharmacodynamics. 2020; 12(1): 1-4. doi: 10.5958/2321-5836.2020.00001.4
9.    Subasree S.. Prevalence of Thyroid Disroders in India: An Overview. Research J. Pharm. and Tech. 2014; 7(10): 1165-1168.
10.    Indumathy K., Samson R., Suseela J.R. A Study to Assess the Knowledge Attitude and Practices of Mothers Regarding Prevention of Iodine Deficiency among School Children in a Selected Rural Area, Bangalore. Asian J. Nur. Edu. & Research. 2011;1(1): 54-56.
11.    Zahrah S. Mahdi, Mohammad Oda Selman, Shiemaa M. Mohammad, Anwar M. Suhail. The Impact of Positive Thyroid Peroxidase Antibody in patients with unexplained Recurrent Miscarriage. Research J. Pharm. and Tech. 2020;  13(10): 4702-4706. doi: 10.5958/0974-360X.2020.00827.6
12.    Averyanov S. V., Kamilov F. Kh., Galiullina M. V., Ganeev T. I., Yunusov R. R. Systemic Approach to Diagnosis and Treatment Planning of Occlusion Anomalies in adult patients with Dentition defects and Deformities Residing in the Iodine-Deficient Region// Research J. Pharm. and Tech. 2020; 13(12): 6035-6040. doi: 10.5958/0974-360X.2020.01052.5
13.    Maheshwari P., Mohan R., Shanmugarajan T. S. KAP Study on Thyroid Disorders (Hypothyroidism and Hyperthyroidism) in a Tertiary Care Hospital// Research J. Pharm. and Tech. 2017; 10(1):41-43. doi: 10.5958/0974-360X.2017.00010.5
14.    Anandkumar S., Shanmugapandiyan P. Clinical Investigation on Mini Mental Score Assessment on various stages of Hypothyroidism patients// Research J. Pharm. and Tech. 2019; 12(10): 4763-4766. doi: 10.5958/0974-360X.2019.00821.7
15.    Rana I. Ahmad, Haider A. Al-Barry. Neonatal Screening for Congenital Hypothyroidism at Obstetrics and Pediatrics Hospital in Lattakia, Syria. Research J. Pharm. and Tech. 2020; 13(6): 2749-2751. doi: 10.5958/0974-360X.2020.00488.6
16.    Bhavya S.V, Shantha Kumari K. Effectiveness of Awareness Programme on Importance of Iodine in Fetal Brain Development among Women in Selected Rural Area, Mangalore. Int. J. Adv. Nur. Management. 2015; 3(4):  363-366.doi: 10.5958/2454-2652.2015.00035.9
17.    Syed S. Iodine and the «near» eradication of cretinism.  Pediatrics. 2015; 135(4): 594-596.doi: 10.1542/peds.2014-3718
18.    Ashrafian H. Goiters in the renaissance era: multiple cases of thyroid autoimmunity and iodine deficiency.  Best Practice and Research Clinical Endocrinology and Metabolism. 2023; 37(2): 1-8. doi: 10.1016/j.beem.2023.101748
19.    Skalnaya M. G. Iodine: Biological role and significance for medical practice.  Microelements in Medicine. 2018; 19: 3-11.
20.    Katolkar P Parimal, Hirulkar R Mayuresh, Baheti R Jagdish, Meshram S Satish. Herbal Anti-Thyroid Drugs: An Overview. Research J. Pharm. and Tech. 2020; 13(10): 5045-5051. doi: 10.5958/0974-360X.2020.00884.7
21.    State Pharmacopoeia of Russian Federation. 2018;14th ed Moscow, Russian Federation Publishing House of the Ministry of Health of the Russian Federation: 6181–87[in Russian].
22.    British Pharmacopoeia. Herbal drugs and herbal drug preparations. Kelp. London: Medicines and Healthcare Products Regulatory Agency. 2009; 3:1–2
23.    European Pharmacopoeia. 2008; 26th ed Strasböurg, France Publisher EDQM:2213–4
24.    Verhaeghe E. F., Fraysse A., Guerquin-Kern J.-L., Wu T. D., Deves G., Mioskowski C., Leblanc C., Ortega R., Ambroise Y., Potin P. Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J. Biol. Inorg. Chem. 2008; 13: 257-269. doi: 10.1007/s00775-007-0319-6
25.    Hou X., Chai C., Qian Q., Yan X., Fan X. Determination of chemical species of iodine in some seaweeds (I). The Science of the Total Environment. 1997; 204(3); 215-221.
26.    Peng L.-Q., Yu W.-Y., Xu J.-J., Cao J. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria // Food Chemistry. 2018; 239: 1075-1084. doi: 10.1016/j.foodchem.2017.07.031
27.    Küpper F. C., Carrano C. J. Key aspects of the iodine metabolism in brown algae: a brief critical review. Metallomics. 2019; 11: 756-764. doi: 10.1039/c8mt00327k
28.    Badocco D., Di Marco V., Piovan A., Caniato R., Pastore P. A procedure for the quantification of total iodine by inductively coupled plasma mass spectrometry, and its application to the determination of iodine in algae sampled in the lagoon of Venice.  Anal. Methods. 2016; 8: 7545-7551.
29.    Xu L., Luo C., Ling H., Tang Y., Wen H. Determination of low bromine (Br) and iodine (I) in water with low- to high-salinity content using ICP-MS. International Journal of Mass Spectrometry. 2018; 432: 52-58.
30.    Rondan F. S., Hartwig C. A., Novo D. L. R., Moraes D. P., Cruz S. M., Mello P. A., Mesko M. F. Ultra-trace determination of bromine and iodine in rice by ICP-MS after microwave-induced combustion. Journal of Food Composition and Analysis. 2018; 66: 199-204.
31.    Nascimento M. S., Mendes A. L. G., Henn A. S., Picoloto R. S., Mello P. A.,  Flores E. M. M. Accurate determination of bromine and iodine in medicinal plants by inductively coupled plasma-mass spectrometry after microwave-induced combustion. Spectrochimica Acta. Part B: Atomic spectroscopy. 2017; 138: 58-63.
32.    Romarís-Hortas V., Moreda-Piñeiro A., Bermejo-Barrera P. Microwave assisted extraction of iodine and bromine from edible seaweed for inductively coupled plasma-mass spectrometry determination. Talanta. 2009; 79. 947-952. doi: 10.1016/j.talanta.2009.05.036
33.    Kundel M., Thorenz U. R., Petersen J. H., Huang R.-J., Bings N. H., Hoffman T. Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed // Anal. Bioanal. Chem. 2012; 402: 3345-3357.doi: 10.1007/s00216-011-5658-z
34.    Dyke J. V., Dasgupta P. K., Kirk A. B. Trace iodine quantitation in biological samples by mass spectrometric methods. The optimum internal standard. Talanta. 2009; 79: 235-242.doi: 10.1016/j.talanta.2009.03.038
35.    Shelor C. P., Dasgupta P. K. Review of analytical methods for the quantification of iodine in complex matrices. Anal. Chim. Acta. 2011; 702(1); 16-36.doi: 10.1016/j.aca.2011.05.039
36.    Wang K., Jiang S.J. Determination of Iodine and Bromine Compounds by Ion Chromatography/Dynamic Reaction Cell Inductively Coupled Plasma Mass Spectrometry. Analytical Sciences. 2008; 24: 509-514.doi: 10.2116/analsci.24.509
37.    Shah M., Wuilloud R. G., Kannamkumarath S. S., Caruso J. A. Iodine speciation studies in commercially available seaweed by coupling different chromatographic techniques with UV and ICP-MS detection. J. Anal. At. Spectrom. 2005; 20: 176-182.
38.    Han X., Cao L., Cheng H., Liu J., Xu Z. Determination of iodine species in seaweed and seawater samples using ion-pair reversed phase high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry. Anal. Methods. 2012; 4: 3471-3477.
39.    Nitschke U., Stengel D. B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products. Food Chemistry. 2015; 172: 326-334.doi: 10.1016/j.foodchem.2014.09.030
40.    Serfor-Armah Y., Nyarko B. J. B., Carboo D., Osae E. K., Anim-Sampong S., Akaho E. H. K. Instrumental neuron activation analysis of iodine levels in fourteen seaweed species from the coastal belt of Ghana.  J. Radional. Nucl. Chem. 2000; 245(2); 443-446.
41.    Muramatsu Y., Ohmomo Y., Sumiya M. Determination of iodine-129 and iodine-127 in environmental samples collected in Japan. J. Radional. Nucl. Chem. 1988; 123(1): 181-189.
42.    Hou X., Chai C., Qian Q., Yan X., Fan X. Determination of chemical species of iodine in some seaweeds (I). The Science of the Total Environment. 1997; 204: 215-221.
43.    Fukushima M., Chatt A. Estimation of total as well as bioaccessible levels and average daily dietary intake of iodine from Japanese edible seaweeds by epithermal neutron activation analysis. J. Radional. Nucl. Chem. 2012; 294: 471-478.
44.    Wifladt A.M., Lund W., Bye R. Determination of iodine in seaweed and table salt by an indirect atomic absorption method. Talanta. 1989; 36(3) DOI: 10.1016/0039-9140(89)80207-3
45.    Kuldvere A. Indirect determination of iodine by cold vapour atomic-absorption spectrophotometry utilizing the interfering effect of iodine against mercury. Analyst. 1982; 107: 1343-1349.
46.    Zanatta M. B. T., Nakadi F. V., da Veiga M. A. M. S.  CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application. Talanta. 2018; 179: 563-568.doi: 10.1016/j.talanta.2017.11.052
47.    Filatova D.G., Es’kina V.V., Baranovskaya V.B., Karpov Y.A. Present-day possibilities of high-resolution continuous-source electrothermal atomic absorption spectrometry. Journal of Analytical Chemistry. 2020; 75(5): 563-568.
48.    Huang M. D., Becker-Ross H., Florek S., Okruss M., Welz B., Mores S. Determination of iodine via the spectrum of barium mono-iodide using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Spectrochim. Acta. Part B. 2009; 64: 697-701.
49.    Schneider M., Welz B., Huang M.-D., Becker-Ross H., Okruss M., Carasek E. Iodine determination by high-resolution continuum source molecular absorption spectrometry – a comparison between potential molecules // Spectrochim. Acta. Part B: Atomic spectroscopy. 2019; 153: 42-49.
50.    Marchenko Z., Balcezak M. Methods of spectrophotometry in the UV and visible regions in inorganic analysis. M.  Binom. Laboratory of Knowledge, 2007. 711 p.[in Russian].
51.    Gazda D., Lipert R. J., Fritz J. S., Porter M. D. Investigation of the iodine-poly(vinylpyrrolidone) interaction employed in the determination of biocidal iodine by colorimetric solid-phase extraction. Anal. Chim. Acta. 2004; 510: 241-247.
52.    Bhagat P.R., Pandey A.K., Acharya R., Nair A.G.C., Rajurkar N.S., Reddy A. V. R. Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes. Talanta. 2008; 74: 1313-1320. doi: 10.1016/j.talanta.2007.08.035
53.    Pena-Pereira F., Lavilla I., Bendicho C. Headspace single-drop microextraction coupled to microvolume UV-vis spectrophotometry for iodine determination. Anal. Chim. Acta. 2009; 631: 223-228.doi: 10.1016/j.aca.2008.10.048
54.    Gamallo-Lorenzo D., Barciela-Alonso M. C., Moreda-Piñeiro A., Bermejo-Barrera A., Bermejo-Barrera P. Microwave-assisted alkaline digestion combined with microwave-assisted distillation for the determination of iodide and total iodine in edible seaweed by catalytic spectrophotometry. Anal. Chim. Acta. 2005; 542: 287-295.
55.    Nunes N., Valente S., Ferraz S., Barreto M.C., Pinheiro de Carvalho M.A.A. Validation of a spectrophotometric methodology for a rapid iodine analysis in algae and seaweed casts. Algal Research. 2019; 42: 101613. P. 1-8.
56.    Agrawal O., Sunita G., Gupta V. K. A sensitive colorimetric method for the micro determination of iodine in marine water. Talanta. 1999; 49: 923-928. doi: 10.1016/s0039-9140(99)00091-0

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available