Author(s): Rupesh Kumar Pandey, Manish Kumar Pathak, Lubhan Singh, Priyanka Pandey, Vladislav Naumovich, Prateek Pathak, Maria Grishina

Email(s): Email ID Not Available

DOI: 10.52711/0974-360X.2024.00399   

Address: Rupesh Kumar Pandey1, Manish Kumar Pathak2, Lubhan Singh3, Priyanka Pandey4, Vladislav Naumovich4, Prateek Pathak4, Maria Grishina4
1Department of Pharmacology, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut (U.P.)
2Department of Pharmaceutical Chemistry, Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut (U.P.)
3Department of Pharmaceutics, NKBR College of Pharmacy, Meerut (U.P.)
4Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, Russia.
*Corresponding Author

Published In:   Volume - 17,      Issue - 6,     Year - 2024


ABSTRACT:
Objective - COVID-19 is the black chapter in the history of the world. Currently, many countries are facing different waves of this pandemic but the problem in front of us is the frequent mutants. Some questions are also coming about how we will treat future coming viruses. Method - Our aim in this research work is to perform the Molecular docking of important bioactive compounds of Gmelina arborea i.e. arboreol, gmelanone, gmelinol and hentriacontanol to the active site of 3CLpro. Result/Conclusion - the docking studies strongly suggest that Gmelina arborea can be used in the disease management. The need is to explore the plant Gmelina arborea, which can give directions in treatment in various diseases including COVID-19.


Cite this article:
Rupesh Kumar Pandey, Manish Kumar Pathak, Lubhan Singh, Priyanka Pandey, Vladislav Naumovich, Prateek Pathak, Maria Grishina. COVID-19 Variants and Treatment approaches with Bio-active Compounds of Gmelina arborea: Research work based on Docking Studies. Research Journal of Pharmacy and Technology. 2024; 17(6):2556-0. doi: 10.52711/0974-360X.2024.00399

Cite(Electronic):
Rupesh Kumar Pandey, Manish Kumar Pathak, Lubhan Singh, Priyanka Pandey, Vladislav Naumovich, Prateek Pathak, Maria Grishina. COVID-19 Variants and Treatment approaches with Bio-active Compounds of Gmelina arborea: Research work based on Docking Studies. Research Journal of Pharmacy and Technology. 2024; 17(6):2556-0. doi: 10.52711/0974-360X.2024.00399   Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-6-18


REFERENCES:
1.    Pal M, Berhanu G, Desalegn C, Kandi V. Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2): An Update. Cureus. 2020; 12(3): e7423. Published 2020 Mar 26. doi:10.7759/cureus.7423
2.    Imbert I, Snijder EJ, Dimitrova M, Guillemot JC, Lécine P, Canard B. The SARS-Coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 2008; 133(2): 136-148. doi:10.1016/j.virusres.2007.11.017
3.    Huang N, Perez P, Kato T, et al. SARS-CoV-2 infection of the oral cavity and saliva. Nat Med 27; 892–903 (2021). https://doi.org/10.1038/s41591-021-01296-8
4.    Ni W, Yang X, Yang D, et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care. 2020; 24(1): 422. Published 2020 Jul 13. Doi: 10.1186/s13054-020-03120-0.
5.    https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
6.    Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020 Aug 20; 182(4): 812-827.e19.
7.    Galloway SE, Paul P, MacCannell DR, et al. Emergence of SARS-CoV-2 B.1.1.7 Lineage - United States, December 29, 2020; January 12; 2021. MMWR Morb Mortal Wkly Rep. 2021; Jan 22; 70(3): 95-99.
8.    Volz E, Mishra S, Chand M, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021 May; 593(7858): 266-269.
9.    Tegally H, Wilkinson E, Giovanetti M, et al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021; Apr; 592(7854): 438-443.
10.    Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. bioRxiv. 2021 Mar 01.
11.    Wang P, Casner RG, Nair MS, et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. bioRxiv. 2021 Apr 09.
12.    Faria NR, Mellan TA, Whittaker C, Claro IM, et al. Genomics and epidemiology of a novel SARS-CoV-2 lineage in Manaus, Brazil. medRxiv. 2021 Mar 03;
13.    Cascella M, Rajnik M, Aleem A, et al. Features, Evaluation, and Treatment of Coronavirus (COVID-19) In: StatPearls . Treasure Island (FL): Stat Pearls Publishing; 2021.    
14.    Gaikwad PP, Nakade M, Kamble S, Shiralkar M, Chaudhari V, Udmale Mangesh. Protocol for a Systematic review and Network meta-analysis of Randomized controlled trials examining the effectiveness of Ayurveda Interventions in management of Covid 19 positive patients. Research Journal of Pharmacy and Technology. 2023; 16(2): 936-0. doi: 10.52711/0974-360X.2023.00157.
15.    Gidwani B, Bhattacharya R, Shukla SS, Pandey RK. Indian spices: past, present and future challenges as the engine for bio‐enhancement of drugs: impact of COVID‐19. Journal of the Science of Food and Agriculture. 2022 Jun; 102(8): 3065-77.
16.    Database on Medicinal plants used in Ayurveda. Vol III, Central council for Research in Ayurveda & Siddha, Jawaharlal Nehru Bharatiya Chikitsa Avum Homeopathy Anusandhan Bhavan, New Delhi, 2001, 217.
17.    Tapas AR, Sakerkar DM, Kalde RB. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008; 7: 1089–1099. doi: 10.4314/tjpr.v7i3.14693.
18.    Zandi K, Teoh B T, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virology Journal. 2011; 8: 560,.
19.    Pang L, Zou S, Shi Y, Mao Q, Chen Y. Apigenin attenuates PM2.5-induced airway hyperresponsiveness and inflammation by down-regulating NF-κB in murine model of asthma. Int. J. Clin. Exp. Pathol. 2019; 12(10): 3700-3709.
20.    Qian S, Fan W, Qian P, et al. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 2015; 7(4): 1613-1626. Published 2015 Mar 31. doi:10.3390/v7041613.
21.    Li YC, Yeh CH, Yang ML, Kuan YH. Luteolin Suppresses Inflammatory Mediator Expression by Blocking the Akt/NFκB Pathway in Acute Lung Injury Induced by Lipopolysaccharide in Mice. Evidence-Based Complementary and Alternative Medicine,vol.2012.
22.    Xu XY, Wang DY, Li YP. et al. Plant-derived lignans as potential antiviral agents: a systematic review. Phytochem Rev. 2021. https://doi.org/10.1007/s11101-021-09758-0.
23.    Zhou BX, Li J, Liang Xl. et al. β-sitosterol ameliorates influenza A virus-induced proinflammatory response and acute lung injury in mice by disrupting the cross-talk between RIG-I and IFN/STAT signaling. Acta Pharmacol Sin. 2020; 41: 1178–1196. https://doi.org/10.1038/s41401-020-0403-9.
24.    Marta Vivancos, Juan J. Moreno, β-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages, Free Radical Biology and Medicine. 2005; 39(1): 91-97.
25.    Raj AAA, Vinnarasi J. Natural Potential Inhibitors for Covid 19 – An Insilico Approach. Research Journal of Pharmacy and Technology. 2021; 14(9): 4913-9. doi: 10.52711/0974-360X.2021.00854.
26.    Mishra GP, Bhadane RN, Panigrahi D, Amawi HA, Asbhy CR Jr, Tiwari AK. The interaction of the bioflavonoids with five SARS-CoV-2 proteins targets: An in silico study. Comput Biol Med. 2021; 134: 104464. doi:10.1016/j.compbiomed.2021.104464
27.    Panigrahi D, Mishra GP. Virtual Screening, Molecular Docking and In silico ADME-Tox Analysis for Identification of Potential Main Protease (Mpro) Enzyme Inhibitors, Anti-Infective Agents 2021; 19(4): e130621188860. https://dx.doi.org/10.2174/2211352518999201208201854
28.    Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints. 2020: 2020030226 (doi: 10.20944/preprints202003.0226.v1).
29.    Sankar M, Ramachandran B, Pandi B, et al. In silico Screening of Natural Phytocompounds towards Identification of Potential Lead Compounds to Treat COVID-19. Front Mol Biosci. 2021; 8: 637122.
30.    Derosa G, Maffioli P, D'Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. 2021; 35(3): 1230-1236. doi:10.1002/ptr.6887.
31.    Shawan MMAK, Halder SK, Hasan MA. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: an in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl Res Cent. 2021; 45(1): 27. doi:10.1186/s42269-020-00479-6.
32.    Upreti S, Prusty JS, Pandey SC, et al. Identification of novel inhibitors of angiotensin-converting enzyme 2 (ACE-2) receptor from Urtica dioica to combat coronavirus disease 2019 (COVID-19). Mol Divers 25, 1795–1809 (2021). https://doi.org/10.1007/s11030-020-10159-2.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank


Recent Articles




Tags


Not Available